These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26021216)

  • 1. Comparison of PCA approaches for very large group ICA.
    Calhoun VD; Silva RF; Adalı T; Rachakonda S
    Neuroimage; 2015 Sep; 118():662-6. PubMed ID: 26021216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining EEG-fMRI using independent component analysis.
    Eichele T; Calhoun VD; Debener S
    Int J Psychophysiol; 2009 Jul; 73(1):53-61. PubMed ID: 19223007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional principal component analysis of fMRI data.
    Viviani R; Grön G; Spitzer M
    Hum Brain Mapp; 2005 Feb; 24(2):109-29. PubMed ID: 15468155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling with independent components.
    Beckmann CF
    Neuroimage; 2012 Aug; 62(2):891-901. PubMed ID: 22369997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of multi-subject ICA methods for analysis of fMRI data.
    Erhardt EB; Rachakonda S; Bedrick EJ; Allen EA; Adali T; Calhoun VD
    Hum Brain Mapp; 2011 Dec; 32(12):2075-95. PubMed ID: 21162045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis.
    Meyer-Baese A; Wismueller A; Lange O
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):387-98. PubMed ID: 15484444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme.
    Esposito F; Goebel R
    Curr Opin Neurol; 2011 Aug; 24(4):378-85. PubMed ID: 21734575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-free functional MRI analysis using topographic independent component analysis.
    Meyer-Bäse A; Lange O; Wismüller A; Ritter H
    Int J Neural Syst; 2004 Aug; 14(4):217-28. PubMed ID: 15372699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power.
    Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM
    Neuroimage; 2019 Aug; 197():435-438. PubMed ID: 31026516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging.
    Zuendorf G; Kerrouche N; Herholz K; Baron JC
    Hum Brain Mapp; 2003 Jan; 18(1):13-21. PubMed ID: 12454908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.
    Shi Y; Zeng W; Wang N
    Comput Methods Programs Biomed; 2017 Sep; 148():137-151. PubMed ID: 28774436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach to activation detection in fMRI based on empirical mode decomposition.
    Zheng T; Cai M; Jiang T
    J Integr Neurosci; 2010 Dec; 9(4):407-27. PubMed ID: 21213412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data.
    Calhoun VD; Liu J; Adali T
    Neuroimage; 2009 Mar; 45(1 Suppl):S163-72. PubMed ID: 19059344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for reducing large fMRI data sets for independent component analysis.
    Wang Z; Wang J; Calhoun V; Rao H; Detre JA; Childress AR
    Magn Reson Imaging; 2006 Jun; 24(5):591-6. PubMed ID: 16735180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory Efficient PCA Methods for Large Group ICA.
    Rachakonda S; Silva RF; Liu J; Calhoun VD
    Front Neurosci; 2016; 10():17. PubMed ID: 26869874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting functional connectivity in fMRI using PCA and regression analysis.
    Zhong Y; Wang H; Lu G; Zhang Z; Jiao Q; Liu Y
    Brain Topogr; 2009 Sep; 22(2):134-44. PubMed ID: 19408112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of independent component analyses with an application to resting-state fMRI.
    Risk BB; Matteson DS; Ruppert D; Eloyan A; Caffo BS
    Biometrics; 2014 Mar; 70(1):224-36. PubMed ID: 24350655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
    Zhang H; Zuo XN; Ma SY; Zang YF; Milham MP; Zhu CZ
    Neuroimage; 2010 Jul; 51(4):1414-24. PubMed ID: 20338245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.