These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26021218)

  • 1. The (in)stability of functional brain network measures across thresholds.
    Garrison KA; Scheinost D; Finn ES; Shen X; Constable RT
    Neuroimage; 2015 Sep; 118():651-61. PubMed ID: 26021218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity.
    Whitlow CT; Casanova R; Maldjian JA
    Radiology; 2011 May; 259(2):516-24. PubMed ID: 21406628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.
    Kaushal M; Oni-Orisan A; Chen G; Li W; Leschke J; Ward D; Kalinosky B; Budde M; Schmit B; Li SJ; Muqeet V; Kurpad S
    Brain Connect; 2017 Sep; 7(7):413-423. PubMed ID: 28657334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity.
    Cole MW; Ito T; Braver TS
    Brain Connect; 2015 Oct; 5(8):497-504. PubMed ID: 26165732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of intrinsic connectivity networks in Chinese-chess experts.
    Duan X; Long Z; Chen H; Liang D; Qiu L; Huang X; Liu TC; Gong Q
    Brain Res; 2014 Apr; 1558():33-43. PubMed ID: 24565926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of normalization and segmentation on resting-state brain networks.
    Magalhães R; Marques P; Soares J; Alves V; Sousa N
    Brain Connect; 2015 Apr; 5(3):166-76. PubMed ID: 25420048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain network connectivity assessed using graph theory in frontotemporal dementia.
    Agosta F; Sala S; Valsasina P; Meani A; Canu E; Magnani G; Cappa SF; Scola E; Quatto P; Horsfield MA; Falini A; Comi G; Filippi M
    Neurology; 2013 Jul; 81(2):134-43. PubMed ID: 23719145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weight-conserving characterization of complex functional brain networks.
    Rubinov M; Sporns O
    Neuroimage; 2011 Jun; 56(4):2068-79. PubMed ID: 21459148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks.
    Hartman D; Hlinka J; Palus M; Mantini D; Corbetta M
    Chaos; 2011 Mar; 21(1):013119. PubMed ID: 21456833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model testing for distinctive functional connectivity gradients with resting-state fMRI data.
    O'Rawe JF; Ide JS; Leung HC
    Neuroimage; 2019 Jan; 185():102-110. PubMed ID: 30315909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Fragmentation of Resting-State Functional Magnetic Resonance Imaging Connectivity Networks with Node-Wise Thresholding.
    Hayasaka S
    Brain Connect; 2017 Oct; 7(8):504-514. PubMed ID: 28899207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
    Gopinath K; Krishnamurthy V; Cabanban R; Crosson BA
    Brain Connect; 2015 Jun; 5(5):267-75. PubMed ID: 25744222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nodal approach reveals differential impact of lateralized focal epilepsies on hub reorganization.
    Ridley BG; Rousseau C; Wirsich J; Le Troter A; Soulier E; Confort-Gouny S; Bartolomei F; Ranjeva JP; Achard S; Guye M
    Neuroimage; 2015 Sep; 118():39-48. PubMed ID: 26070261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Varying Network Measures in Resting and Task States Using Graph Theoretical Analysis.
    Yang CY; Lin CP
    Brain Topogr; 2015 Jul; 28(4):529-40. PubMed ID: 25877489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual and sex-related differences in pain and relief responsiveness are associated with differences in resting-state functional networks in healthy volunteers.
    Galli G; Santarnecchi E; Feurra M; Bonifazi M; Rossi S; Paulus MP; Rossi A
    Eur J Neurosci; 2016 Feb; 43(4):486-93. PubMed ID: 26547276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.
    Song J; Nair VA; Gaggl W; Prabhakaran V
    Brain Connect; 2015 Jun; 5(5):276-83. PubMed ID: 25647011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.