These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26021290)
21. Estuarine sediment resuspension and acidification: Release behaviour of contaminants under different oxidation levels and acid sources. Martín-Torre MC; Cifrian E; Ruiz G; Galán B; Viguri JR J Environ Manage; 2017 Sep; 199():211-221. PubMed ID: 28544927 [TBL] [Abstract][Full Text] [Related]
22. Metal release from contaminated estuarine sediment under pH changes in the marine environment. Martín-Torre MC; Payán MC; Verbinnen B; Coz A; Ruiz G; Vandecasteele C; Viguri JR Arch Environ Contam Toxicol; 2015 Apr; 68(3):577-87. PubMed ID: 25680769 [TBL] [Abstract][Full Text] [Related]
23. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans. Wang Z; Wang Y; Zhao P; Chen L; Yan C; Yan Y; Chi Q Mar Pollut Bull; 2015 Dec; 101(2):707-15. PubMed ID: 26481412 [TBL] [Abstract][Full Text] [Related]
24. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins. Widdicombe S; Beesley A; Berge JA; Dashfield SL; McNeill CL; Needham HR; Øxnevad S Mar Pollut Bull; 2013 Aug; 73(2):416-27. PubMed ID: 23218873 [TBL] [Abstract][Full Text] [Related]
25. Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions. Freitas R; Pires A; Moreira A; Wrona FJ; Figueira E; Soares AM Mar Environ Res; 2016 Jun; 117():75-84. PubMed ID: 27088614 [TBL] [Abstract][Full Text] [Related]
26. Effects of CO Clements JC; Hunt HL Mar Pollut Bull; 2017 Apr; 117(1-2):6-16. PubMed ID: 28143647 [TBL] [Abstract][Full Text] [Related]
27. Cellular level response of the bivalve Limecola balthica to seawater acidification due to potential CO Sokołowski A; Świeżak J; Hallmann A; Olsen AJ; Ziółkowska M; Øverjordet IB; Nordtug T; Altin D; Krause DF; Salaberria I; Smolarz K Sci Total Environ; 2021 Nov; 794():148593. PubMed ID: 34323752 [TBL] [Abstract][Full Text] [Related]
28. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. De Orte MR; Lombardi AT; Sarmiento AM; Basallote MD; Rodriguez-Romero A; Riba I; Del Valls A Mar Environ Res; 2014 May; 96():136-44. PubMed ID: 24148229 [TBL] [Abstract][Full Text] [Related]
29. What is the best endpoint for assessing environmental risk associated with acidification caused by CO Passarelli MC; Riba I; Cesar A; DelValls TA Mar Pollut Bull; 2018 Mar; 128():379-389. PubMed ID: 29571386 [TBL] [Abstract][Full Text] [Related]
30. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage. Bamber SD; Westerlund S Aquat Toxicol; 2016 Nov; 180():295-305. PubMed ID: 27776295 [TBL] [Abstract][Full Text] [Related]
31. Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment. Payán MC; Verbinnen B; Galan B; Coz A; Vandecasteele C; Viguri JR Environ Pollut; 2012 Mar; 162():29-39. PubMed ID: 22243844 [TBL] [Abstract][Full Text] [Related]
32. Simulating CO Díaz-García A; Borrero-Santiago AR; Ángel DelValls T; Riba I Mar Pollut Bull; 2017 Mar; 116(1-2):80-86. PubMed ID: 28040253 [TBL] [Abstract][Full Text] [Related]
33. CO2 leaking from sub-seabed storage: Responses of two marine bacteria strains. Borrero-Santiago AR; Carbú M; DelValls TÁ; Riba I Mar Environ Res; 2016 Oct; 121():2-8. PubMed ID: 27255122 [TBL] [Abstract][Full Text] [Related]
34. Potential acidification impacts on zooplankton in CCS leakage scenarios. Halsband C; Kurihara H Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089 [TBL] [Abstract][Full Text] [Related]
35. The macrobenthic community along a mercury contamination in a temperate estuarine system (Ria de Aveiro, Portugal). Nunes M; Coelho JP; Cardoso PG; Pereira ME; Duarte AC; Pardal MA Sci Total Environ; 2008 Nov; 405(1-3):186-94. PubMed ID: 18765161 [TBL] [Abstract][Full Text] [Related]
36. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification. Passarelli MC; Cesar A; Riba I; DelValls TA Chemosphere; 2017 Oct; 184():224-234. PubMed ID: 28599151 [TBL] [Abstract][Full Text] [Related]
37. The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. De Marchi L; Pretti C; Chiellini F; Morelli A; Neto V; Soares AMVM; Figueira E; Freitas R Sci Total Environ; 2019 May; 666():1178-1187. PubMed ID: 30970483 [TBL] [Abstract][Full Text] [Related]
38. Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. Hu MY; Casties I; Stumpp M; Ortega-Martinez O; Dupont S J Exp Biol; 2014 Jul; 217(Pt 13):2411-21. PubMed ID: 24737772 [TBL] [Abstract][Full Text] [Related]
39. Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals. de Orte MR; Sarmiento AM; DelValls TÁ; Riba I Mar Pollut Bull; 2014 Sep; 86(1-2):59-67. PubMed ID: 25125286 [TBL] [Abstract][Full Text] [Related]
40. Impact of environmental hypercapnia on fertilization success rate and the early embryonic development of the clam Limecola balthica (Bivalvia, Tellinidae) from the southern Baltic Sea - A potential CO Świeżak J; Borrero-Santiago AR; Sokołowski A; Olsen AJ Mar Pollut Bull; 2018 Nov; 136():201-211. PubMed ID: 30509800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]