These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 26021432)

  • 1. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of surface charge density and its effect on boundary slip.
    Jing D; Bhushan B
    Langmuir; 2013 Jun; 29(23):6953-63. PubMed ID: 23683055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.
    Jing D; Bhushan B
    Langmuir; 2013 Nov; 29(47):14691-700. PubMed ID: 24168076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of surface charge on boundary slip in fluid flow.
    Pan Y; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():117-121. PubMed ID: 23164192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
    Pan Y; Bhushan B; Zhao X
    Beilstein J Nanotechnol; 2014; 5():1042-65. PubMed ID: 25161839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids.
    Bhushan B; Pan Y; Daniels S
    J Colloid Interface Sci; 2013 Feb; 392():105-116. PubMed ID: 23123096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on Effective Slip Length and Surface Charge at Solid-Oil Interfaces of Roughness-Induced Surfaces.
    Tian P; Li Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroviscous effect on fluid drag in a microchannel with large zeta potential.
    Jing D; Bhushan B
    Beilstein J Nanotechnol; 2015; 6():2207-16. PubMed ID: 26734512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of boundary slip and surface charge on the pressure-driven flow.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2013 Feb; 392():15-26. PubMed ID: 23137902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge.
    Brown PS; Bhushan B
    J Colloid Interface Sci; 2015 Oct; 456():210-8. PubMed ID: 26133277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.
    Das PK
    Electrophoresis; 2016 Jan; 37(2):347-55. PubMed ID: 26530465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobubbles and their role in slip and drag.
    Maali A; Bhushan B
    J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.
    Gruener S; Wallacher D; Greulich S; Busch M; Huber P
    Phys Rev E; 2016 Jan; 93(1):013102. PubMed ID: 26871150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscosity effects on hydrodynamic drainage force measurements involving deformable bodies.
    Dagastine RR; Webber GB; Manica R; Stevens GW; Grieser F; Chan DY
    Langmuir; 2010 Jul; 26(14):11921-7. PubMed ID: 20578751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of hydrophobic interaction between silica surfaces coated with octadecyltrichlorosilane.
    Li Z; Yoon RH
    J Colloid Interface Sci; 2013 Feb; 392():369-375. PubMed ID: 23127878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol.
    Li Y; Pan Y; Zhao X
    Beilstein J Nanotechnol; 2017; 8():2504-2514. PubMed ID: 29259865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.
    Maali A; Wang Y; Bhushan B
    Langmuir; 2009 Oct; 25(20):12002-5. PubMed ID: 19821617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface interaction of silica nanoparticles modified by silane coupling agents on viscosity of methylethylketone suspension.
    Iijima M; Tsukada M; Kamiya H
    J Colloid Interface Sci; 2007 Jan; 305(2):315-23. PubMed ID: 17064717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.