These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26021460)

  • 1. Quantifying coordination and coordination variability in backward versus forward running: Implications for control of motion.
    Mehdizadeh S; Arshi AR; Davids K
    Gait Posture; 2015 Jul; 42(2):172-7. PubMed ID: 26021460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of treadmill running velocity on lower extremity coordination variability in healthy runners.
    Bailey JP; Freedman Silvernail J; Dufek JS; Navalta J; Mercer JA
    Hum Mov Sci; 2018 Oct; 61():144-150. PubMed ID: 30092396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying foot placement variability and dynamic stability of movement to assess control mechanisms during forward and lateral running.
    Arshi AR; Mehdizadeh S; Davids K
    J Biomech; 2015 Nov; 48(15):4020-4025. PubMed ID: 26476766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running.
    Hafer JF; Boyer KA
    Gait Posture; 2017 Jan; 51():222-227. PubMed ID: 27821354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in lower-limb coordination and coordination variability between novice and experienced runners during a prolonged treadmill run at anaerobic threshold speed.
    Mo S; Chow DHK
    J Sports Sci; 2019 May; 37(9):1021-1028. PubMed ID: 30394180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexity, symmetry and variability of forward and backward walking at different speeds and transfer effects on forward walking: Implications for neural control.
    Walsh GS; Taylor Z
    J Biomech; 2019 Dec; 97():109377. PubMed ID: 31615643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of coordination and its variability in lower extremity segments during treadmill and overground running at different speeds.
    Abbasi A; Yazdanbakhsh F; Tazji MK; Aghaie Ataabadi P; Svoboda Z; Nazarpour K; Vieira MF
    Gait Posture; 2020 Jun; 79():139-144. PubMed ID: 32408037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of stability in an agility drill using linear and nonlinear measures of variability.
    Mehdizadeh S; Arshi AR; Davids K
    Acta Bioeng Biomech; 2014; 16(3):59-67. PubMed ID: 25308319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraints on dynamic stability during forward, backward and lateral locomotion in skilled football players.
    Mehdizadeh S; Arshi AR; Davids K
    Eur J Sport Sci; 2016; 16(2):190-8. PubMed ID: 25553807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-shoe plantar pressure distribution and lower extremity muscle activity patterns of backward compared to forward running on a treadmill.
    Sterzing T; Frommhold C; Rosenbaum D
    Gait Posture; 2016 May; 46():135-41. PubMed ID: 27131191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in coordination and its variability with an increase in running cadence.
    Hafer JF; Freedman Silvernail J; Hillstrom HJ; Boyer KA
    J Sports Sci; 2016 Aug; 34(15):1388-95. PubMed ID: 26588262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain.
    Ebrahimi S; Kamali F; Razeghi M; Haghpanah SA
    Hum Mov Sci; 2017 Apr; 52():55-66. PubMed ID: 28119210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Costs During Backward Running with Body Weight Support.
    Masumoto K; Galor K; Craig-Jones A; Mercer JA
    Int J Sports Med; 2019 Apr; 40(4):269-275. PubMed ID: 30716782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-limb coordination while walking is affected by cognitive load and walking speed.
    Ghanavati T; Salavati M; Karimi N; Negahban H; Ebrahimi Takamjani I; Mehravar M; Hessam M
    J Biomech; 2014 Jul; 47(10):2300-5. PubMed ID: 24861632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady and transient coordination structures of walking and running.
    Lamoth CJ; Daffertshofer A; Huys R; Beek PJ
    Hum Mov Sci; 2009 Jun; 28(3):371-86. PubMed ID: 19027972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking velocity and lower limb coordination in hemiparesis.
    Hutin E; Pradon D; Barbier F; Bussel B; Gracies JM; Roche N
    Gait Posture; 2012 Jun; 36(2):205-11. PubMed ID: 22551503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination variability around the walk to run transition during human locomotion.
    Seay JF; Haddad JM; van Emmerik RE; Hamill J
    Motor Control; 2006 Apr; 10(2):178-96. PubMed ID: 16871012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor patterns for human gait: backward versus forward locomotion.
    Grasso R; Bianchi L; Lacquaniti F
    J Neurophysiol; 1998 Oct; 80(4):1868-85. PubMed ID: 9772246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of speed on local dynamic stability of locomotion under different task constraints in running.
    Mehdizadeh S; Arshi AR; Davids K
    Eur J Sport Sci; 2014; 14(8):791-8. PubMed ID: 24720520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.