These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26021600)

  • 1. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers.
    Notbohm J; Lesman A; Tirrell DA; Ravichandran G
    Integr Biol (Camb); 2015 Oct; 7(10):1186-95. PubMed ID: 26021600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying cellular traction forces in three dimensions.
    Maskarinec SA; Franck C; Tirrell DA; Ravichandran G
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22108-13. PubMed ID: 20018765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44.
    Friedl P; Maaser K; Klein CE; Niggemann B; Krohne G; Zänker KS
    Cancer Res; 1997 May; 57(10):2061-70. PubMed ID: 9158006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.
    Pedersen JA; Lichter S; Swartz MA
    J Biomech; 2010 Mar; 43(5):900-5. PubMed ID: 20006339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex matrix remodeling and durotaxis can emerge from simple rules for cell-matrix interaction in agent-based models.
    Reinhardt JW; Krakauer DA; Gooch KJ
    J Biomech Eng; 2013 Jul; 135(7):71003. PubMed ID: 23722647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model for cell migration in three-dimensional matrices.
    Zaman MH; Kamm RD; Matsudaira P; Lauffenburger DA
    Biophys J; 2005 Aug; 89(2):1389-97. PubMed ID: 15908579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell migration in 3D matrix.
    Even-Ram S; Yamada KM
    Curr Opin Cell Biol; 2005 Oct; 17(5):524-32. PubMed ID: 16112853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices.
    Malandrino A; Trepat X; Kamm RD; Mak M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006684. PubMed ID: 30958816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration.
    Zaman MH; Matsudaira P; Lauffenburger DA
    Ann Biomed Eng; 2007 Jan; 35(1):91-100. PubMed ID: 17080315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
    Scarcelli G; Polacheck WJ; Nia HT; Patel K; Grodzinsky AJ; Kamm RD; Yun SH
    Nat Methods; 2015 Dec; 12(12):1132-4. PubMed ID: 26436482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration.
    Wang WY; Davidson CD; Lin D; Baker BM
    Nat Commun; 2019 Mar; 10(1):1186. PubMed ID: 30862791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering.
    Alsberg E; Feinstein E; Joy MP; Prentiss M; Ingber DE
    Tissue Eng; 2006 Nov; 12(11):3247-56. PubMed ID: 17518638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Elasticity of the ECM Fibers Facilitates Efficient Intercellular Communication.
    Sopher RS; Tokash H; Natan S; Sharabi M; Shelah O; Tchaicheeyan O; Lesman A
    Biophys J; 2018 Oct; 115(7):1357-1370. PubMed ID: 30217380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindrances to precise recovery of cellular forces in fibrous biopolymer networks.
    Zhang Y; Feng J; Heizler SI; Levine H
    Phys Biol; 2018 Jan; 15(2):026001. PubMed ID: 29231177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices.
    Gjorevski N; Piotrowski AS; Varner VD; Nelson CM
    Sci Rep; 2015 Jul; 5():11458. PubMed ID: 26165921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.
    Ban E; Franklin JM; Nam S; Smith LR; Wang H; Wells RG; Chaudhuri O; Liphardt JT; Shenoy VB
    Biophys J; 2018 Jan; 114(2):450-461. PubMed ID: 29401442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of fluorescent cell-derived-matrix to study 3D cell migration.
    Godeau AL; Delanoë-Ayari H; Riveline D
    Methods Cell Biol; 2020; 156():185-203. PubMed ID: 32222219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protrusive waves guide 3D cell migration along nanofibers.
    Guetta-Terrier C; Monzo P; Zhu J; Long H; Venkatraman L; Zhou Y; Wang P; Chew SY; Mogilner A; Ladoux B; Gauthier NC
    J Cell Biol; 2015 Nov; 211(3):683-701. PubMed ID: 26553933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration.
    Malik AA; Wennberg B; Gerlee P
    Bull Math Biol; 2020 Apr; 82(4):49. PubMed ID: 32248312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.