These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 26021642)
21. Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils. Ryan TM; Teoh CL; Griffin MD; Bailey MF; Schuck P; Howlett GJ J Mol Biol; 2010 Jun; 399(5):731-40. PubMed ID: 20433849 [TBL] [Abstract][Full Text] [Related]
22. Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations. Mao Y; Todorova N; Zlatic CO; Gooley PR; Griffin MD; Howlett GJ; Yarovsky I Biochemistry; 2016 Jul; 55(27):3815-24. PubMed ID: 27311794 [TBL] [Abstract][Full Text] [Related]
23. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. Ferreira N; Cardoso I; Domingues MR; Vitorino R; Bastos M; Bai G; Saraiva MJ; Almeida MR FEBS Lett; 2009 Nov; 583(22):3569-76. PubMed ID: 19861125 [TBL] [Abstract][Full Text] [Related]
24. Effect of oxidation and mutation on the conformational dynamics and fibril assembly of amyloidogenic peptides derived from apolipoprotein C-II. Legge FS; Binger KJ; Griffin MD; Howlett GJ; Scanlon D; Treutlein H; Yarovsky I J Phys Chem B; 2009 Oct; 113(42):14006-14. PubMed ID: 19780547 [TBL] [Abstract][Full Text] [Related]
25. An equilibrium model for linear and closed-loop amyloid fibril formation. Yang S; Griffin MD; Binger KJ; Schuck P; Howlett GJ J Mol Biol; 2012 Aug; 421(2-3):364-77. PubMed ID: 22370559 [TBL] [Abstract][Full Text] [Related]
26. Quinopeptide formation associated with the disruptive effect of epigallocatechin-gallate on lysozyme fibrils. Cao N; Zhang YJ; Feng S; Zeng CM Int J Biol Macromol; 2015; 78():389-95. PubMed ID: 25931397 [TBL] [Abstract][Full Text] [Related]
27. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer. Nie RZ; Zhu W; Peng JM; Ge ZZ; Li CM Biochimie; 2016 Jun; 125():204-12. PubMed ID: 27079519 [TBL] [Abstract][Full Text] [Related]
28. Epigallocatechin Gallate Remodels Fibrils of Lattice Corneal Dystrophy Protein, Facilitating Proteolytic Degradation and Preventing Formation of Membrane-Permeabilizing Species. Stenvang M; Christiansen G; Otzen DE Biochemistry; 2016 Apr; 55(16):2344-57. PubMed ID: 27042751 [TBL] [Abstract][Full Text] [Related]
29. A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. Teoh CL; Pham CL; Todorova N; Hung A; Lincoln CN; Lees E; Lam YH; Binger KJ; Thomson NH; Radford SE; Smith TA; Müller SA; Engel A; Griffin MD; Yarovsky I; Gooley PR; Howlett GJ J Mol Biol; 2011 Feb; 405(5):1246-66. PubMed ID: 21146539 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate. Abe Y; Odawara N; Aeimhirunkailas N; Shibata H; Fujisaki N; Tachibana H; Ueda T Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2570-2578. PubMed ID: 30251653 [TBL] [Abstract][Full Text] [Related]
31. Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Nie RZ; Zhu W; Peng JM; Ge ZZ; Li CM Biophys Chem; 2017 Nov; 230():1-9. PubMed ID: 28818314 [TBL] [Abstract][Full Text] [Related]
32. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. Hudson SA; Ecroyd H; Dehle FC; Musgrave IF; Carver JA J Mol Biol; 2009 Sep; 392(3):689-700. PubMed ID: 19616561 [TBL] [Abstract][Full Text] [Related]
33. The polyphenol (-)-epigallocatechin-3-gallate prevents apoA-IIowa amyloidosis in vitro and protects human embryonic kidney 293 cells against amyloid cytotoxicity. Nakajima H; Nishitsuji K; Kawashima H; Kuwabara K; Mikawa S; Uchimura K; Akaji K; Kashiwada Y; Kobayashi N; Saito H; Sakashita N Amyloid; 2016; 23(1):17-25. PubMed ID: 26701221 [TBL] [Abstract][Full Text] [Related]
34. Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals. Cheng XR; Hau BY; Veloso AJ; Martic S; Kraatz HB; Kerman K Anal Chem; 2013 Feb; 85(4):2049-55. PubMed ID: 23276205 [TBL] [Abstract][Full Text] [Related]
35. Effects of mutation on the amyloidogenic propensity of apolipoprotein C-II(60-70) peptide. Todorova N; Hung A; Maaser SM; Griffin MD; Karas J; Howlett GJ; Yarovsky I Phys Chem Chem Phys; 2010 Nov; 12(44):14762-74. PubMed ID: 20938536 [TBL] [Abstract][Full Text] [Related]
36. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Nguyen P; Derreumaux P Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046 [TBL] [Abstract][Full Text] [Related]
37. Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II. Ryan TM; Howlett GJ; Bailey MF J Biol Chem; 2008 Dec; 283(50):35118-28. PubMed ID: 18852267 [TBL] [Abstract][Full Text] [Related]
38. The circularization of amyloid fibrils formed by apolipoprotein C-II. Hatters DM; MacRaild CA; Daniels R; Gosal WS; Thomson NH; Jones JA; Davis JJ; MacPhee CE; Dobson CM; Howlett GJ Biophys J; 2003 Dec; 85(6):3979-90. PubMed ID: 14645087 [TBL] [Abstract][Full Text] [Related]
39. Natural compounds may open new routes to treatment of amyloid diseases. Bieschke J Neurotherapeutics; 2013 Jul; 10(3):429-39. PubMed ID: 23670234 [TBL] [Abstract][Full Text] [Related]
40. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Grelle G; Otto A; Lorenz M; Frank RF; Wanker EE; Bieschke J Biochemistry; 2011 Dec; 50(49):10624-36. PubMed ID: 22054421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]