BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26021743)

  • 21. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair.
    Panigrahi SK; Hopkins KM; Lieberman HB
    Nucleic Acids Res; 2015 May; 43(9):4531-46. PubMed ID: 25873625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta in long patch base excision repair.
    Gembka A; Toueille M; Smirnova E; Poltz R; Ferrari E; Villani G; Hübscher U
    Nucleic Acids Res; 2007; 35(8):2596-608. PubMed ID: 17426133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1.
    Brinkmeyer MK; David SS
    DNA Repair (Amst); 2015 Oct; 34():39-51. PubMed ID: 26377631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using Affinity Pulldown Assays to Study Protein-Protein Interactions of Human NEIL1 Glycosylase and the Checkpoint Protein RAD9-RAD1-HUS1 (9-1-1) Complex.
    McDonald DT; Wang PS; Moitoza Johnson J; Tsai MS
    Methods Mol Biol; 2023; 2701():199-207. PubMed ID: 37574484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between human mismatch repair recognition proteins and checkpoint sensor Rad9-Rad1-Hus1.
    Bai H; Madabushi A; Guan X; Lu AL
    DNA Repair (Amst); 2010 May; 9(5):478-87. PubMed ID: 20188637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of ATRIP protein abundance by RAD9 in the DNA damage repair pathway.
    Peng XJ; Liu SJ; Bao CM; Liu YZ; Xie HW; Cai YH; Li BM; Hang HY; Ding X
    Cell Mol Biol (Noisy-le-grand); 2015 Dec; 61(8):31-6. PubMed ID: 26667770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Casein kinase 2-dependent phosphorylation of human Rad9 mediates the interaction between human Rad9-Hus1-Rad1 complex and TopBP1.
    Takeishi Y; Ohashi E; Ogawa K; Masai H; Obuse C; Tsurimoto T
    Genes Cells; 2010 Jun; 15(7):761-71. PubMed ID: 20545769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects.
    Bao S; Lu T; Wang X; Zheng H; Wang LE; Wei Q; Hittelman WN; Li L
    Oncogene; 2004 Jul; 23(33):5586-93. PubMed ID: 15184880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1.
    Delacroix S; Wagner JM; Kobayashi M; Yamamoto K; Karnitz LM
    Genes Dev; 2007 Jun; 21(12):1472-7. PubMed ID: 17575048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Rad9-Rad1-Hus1 DNA Repair Clamp is Found in Microsporidia.
    Mascarenhas Dos Santos AC; Julian AT; Pombert JF
    Genome Biol Evol; 2022 Apr; 14(4):. PubMed ID: 35439302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA binding by the Rad9A subunit of the Rad9-Rad1-Hus1 complex.
    Hwang BJ; Gonzales R; Corzine S; Stenson E; Pidugu L; Lu AL
    PLoS One; 2022; 17(8):e0272645. PubMed ID: 35939452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex.
    Parrilla-Castellar ER; Arlander SJ; Karnitz L
    DNA Repair (Amst); 2004; 3(8-9):1009-14. PubMed ID: 15279787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that DNA damage detection machinery participates in DNA repair.
    Helt CE; Wang W; Keng PC; Bambara RA
    Cell Cycle; 2005 Apr; 4(4):529-32. PubMed ID: 15876866
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling.
    Xu X; Vaithiyalingam S; Glick GG; Mordes DA; Chazin WJ; Cortez D
    Mol Cell Biol; 2008 Dec; 28(24):7345-53. PubMed ID: 18936170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opening pathways of the DNA clamps proliferating cell nuclear antigen and Rad9-Rad1-Hus1.
    Xu X; Guardiani C; Yan C; Ivanov I
    Nucleic Acids Res; 2013 Dec; 41(22):10020-31. PubMed ID: 24038358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The J domain of Tpr2 regulates its interaction with the proapoptotic and cell-cycle checkpoint protein, Rad9.
    Xiang SL; Kumano T; Iwasaki SI; Sun X; Yoshioka K; Yamamoto KC
    Biochem Biophys Res Commun; 2001 Oct; 287(4):932-40. PubMed ID: 11573955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-function analysis of fission yeast Hus1-Rad1-Rad9 checkpoint complex.
    Kaur R; Kostrub CF; Enoch T
    Mol Biol Cell; 2001 Dec; 12(12):3744-58. PubMed ID: 11739777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair.
    Toueille M; El-Andaloussi N; Frouin I; Freire R; Funk D; Shevelev I; Friedrich-Heineken E; Villani G; Hottiger MO; Hübscher U
    Nucleic Acids Res; 2004; 32(11):3316-24. PubMed ID: 15314187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MutY and MutY homologs (MYH) in genome maintenance.
    Lu AL; Bai H; Shi G; Chang DY
    Front Biosci; 2006 Sep; 11():3062-80. PubMed ID: 16720376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity.
    Friedrich-Heineken E; Toueille M; Tännler B; Bürki C; Ferrari E; Hottiger MO; Hübscher U
    J Mol Biol; 2005 Nov; 353(5):980-9. PubMed ID: 16216273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.