BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1412 related articles for article (PubMed ID: 26021764)

  • 1. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.
    Patwardhan RS; Sharma D; Checker R; Thoh M; Sandur SK
    Free Radic Res; 2015 Oct; 49(10):1218-32. PubMed ID: 26021764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thioredoxin antioxidant system.
    Lu J; Holmgren A
    Free Radic Biol Med; 2014 Jan; 66():75-87. PubMed ID: 23899494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells.
    Aloy MT; Hadchity E; Bionda C; Diaz-Latoud C; Claude L; Rousson R; Arrigo AP; Rodriguez-Lafrasse C
    Int J Radiat Oncol Biol Phys; 2008 Feb; 70(2):543-53. PubMed ID: 17980509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity.
    Jayakumar S; Kunwar A; Sandur SK; Pandey BN; Chaubey RC
    Biochim Biophys Acta; 2014 Jan; 1840(1):485-94. PubMed ID: 24121106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox control of cell death.
    Ueda S; Masutani H; Nakamura H; Tanaka T; Ueno M; Yodoi J
    Antioxid Redox Signal; 2002 Jun; 4(3):405-14. PubMed ID: 12215208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbyl stearate and ionizing radiation potentiate apoptosis through intracellular thiols and oxidative stress in murine T lymphoma cells.
    Mane SD; Kamatham AN
    Chem Biol Interact; 2018 Feb; 281():37-50. PubMed ID: 29273564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol.
    Huang J; Xu J; Tian L; Zhong L
    Biochimie; 2014 Feb; 97():92-103. PubMed ID: 24103200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death.
    Habermann KJ; Grünewald L; van Wijk S; Fulda S
    Cell Death Dis; 2017 Oct; 8(10):e3067. PubMed ID: 28981107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells.
    Go YM; Ziegler TR; Johnson JM; Gu L; Hansen JM; Jones DP
    Free Radic Biol Med; 2007 Feb; 42(3):363-70. PubMed ID: 17210449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation in the lens.
    Lou MF
    Prog Retin Eye Res; 2003 Sep; 22(5):657-82. PubMed ID: 12892645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-t-Butyl hydroxylamine regulates ionizing radiation-induced apoptosis in U937 cells.
    Lee JH; Tak JK; Park KM; Park JW
    Biochimie; 2007 Dec; 89(12):1509-16. PubMed ID: 17764803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
    Ren X; Zou L; Zhang X; Branco V; Wang J; Carvalho C; Holmgren A; Lu J
    Antioxid Redox Signal; 2017 Nov; 27(13):989-1010. PubMed ID: 28443683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1.
    Hansen JM; Watson WH; Jones DP
    Toxicol Sci; 2004 Nov; 82(1):308-17. PubMed ID: 15282410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of cellular activation.
    Nakamura H; Nakamura K; Yodoi J
    Annu Rev Immunol; 1997; 15():351-69. PubMed ID: 9143692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of alpha-phenyl-N-t-butylnitrone on ionizing radiation-induced apoptosis in U937 cells.
    Lee JH; Park JW
    Free Radic Res; 2005 Dec; 39(12):1325-33. PubMed ID: 16298862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenomedullin protects against hypoxia/reoxygenation-induced cell death by suppression of reactive oxygen species via thiol redox systems.
    Kim SM; Kim JY; Lee S; Park JH
    FEBS Lett; 2010 Jan; 584(1):213-8. PubMed ID: 19932100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.