BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26022325)

  • 21. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea.
    Pärn O; Lessin G; Stips A
    PLoS One; 2021; 16(3):e0242637. PubMed ID: 33657117
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allochthonous carbon is a major driver of the microbial food web - A mesocosm study simulating elevated terrestrial matter runoff.
    Meunier CL; Liess A; Andersson A; Brugel S; Paczkowska J; Rahman H; Skoglund B; Rowe OF
    Mar Environ Res; 2017 Aug; 129():236-244. PubMed ID: 28645656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-Bottom Hypoxia Impacts Dynamics of Bacterioplankton Assemblage throughout Water Column of the Gulf of Finland (Baltic Sea).
    Laas P; Šatova E; Lips I; Lips U; Simm J; Kisand V; Metsis M
    PLoS One; 2016; 11(5):e0156147. PubMed ID: 27213812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement.
    Ho AY; Xu J; Yin K; Yuan X; He L; Jiang Y; Lee JH; Anderson DM; Harrison PJ
    Mar Pollut Bull; 2008; 57(6-12):313-24. PubMed ID: 18514234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean.
    Sala MM; Terrado R; Lovejoy C; Unrein F; Pedrós-Alió C
    Environ Microbiol; 2008 Apr; 10(4):942-9. PubMed ID: 18218033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea.
    Hahnke RL; Bennke CM; Fuchs BM; Mann AJ; Rhiel E; Teeling H; Amann R; Harder J
    Environ Microbiol; 2015 Oct; 17(10):3515-26. PubMed ID: 24725270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal patterns of phyto- and bacterioplankton and their relationships with environmental factors in Lake Taihu, China.
    Su X; Steinman AD; Xue Q; Zhao Y; Tang X; Xie L
    Chemosphere; 2017 Oct; 184():299-308. PubMed ID: 28601663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment.
    Moustaka-Gouni M; Kormas KA; Scotti M; Vardaka E; Sommer U
    Protist; 2016 Aug; 167(4):389-410. PubMed ID: 27472657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of phytoplankton community structure and biomass determined by HPLC-CHEMTAX and microscopic methods during summer and autumn in the central Bohai Sea, China.
    Pan H; Li A; Cui Z; Ding D; Qu K; Zheng Y; Lu L; Jiang T; Jiang T
    Mar Pollut Bull; 2020 Jun; 155():111172. PubMed ID: 32469782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marine Microbial Food Web Networks During Phytoplankton Bloom and Non-bloom Periods: Warming Favors Smaller Organism Interactions and Intensifies Trophic Cascade.
    Trombetta T; Vidussi F; Roques C; Scotti M; Mostajir B
    Front Microbiol; 2020; 11():502336. PubMed ID: 33193116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoplankton spring bloom in the NW Mediterranean Sea under climate change.
    Grossi F; Lagasio M; Napoli A; Provenzale A; Tepsich P
    Sci Total Environ; 2024 Mar; 914():169884. PubMed ID: 38190897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of Microbial Communities to Changing Climate Conditions During Summer Cyanobacterial Blooms in the Baltic Sea.
    Berner C; Bertos-Fortis M; Pinhassi J; Legrand C
    Front Microbiol; 2018; 9():1562. PubMed ID: 30090087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters.
    Fouilland E; Tolosa I; Bonnet D; Bouvier C; Bouvier T; Bouvy M; Got P; Le Floc'h E; Mostajir B; Roques C; Sempéré R; Sime-Ngando T; Vidussi F
    FEMS Microbiol Ecol; 2014 Mar; 87(3):757-69. PubMed ID: 24741704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dataset on seston and zooplankton fatty-acid compositions, zooplankton and phytoplankton biomass, and environmental conditions of coastal and offshore waters of the northern Baltic Sea.
    Bandara T; Brugel S; Andersson A; Lau DCP
    Data Brief; 2022 Jun; 42():108158. PubMed ID: 35496486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea.
    Telesh IV; Schubert H; Skarlato SO
    Harmful Algae; 2016 Nov; 59():100-111. PubMed ID: 28073501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea.
    Lindh MV; Riemann L; Baltar F; Romero-Oliva C; Salomon PS; Granéli E; Pinhassi J
    Environ Microbiol Rep; 2013 Apr; 5(2):252-62. PubMed ID: 23584969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake.
    Kisand V; Nõges T
    FEMS Microbiol Ecol; 2004 Oct; 50(1):51-62. PubMed ID: 19712376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoplankton response to N-rich well amelioration brines: A mesocosm study from the southeastern Mediterranean Sea.
    Raveh O; Angel DL; Astrahan P; Belkin N; Bar-Zeev E; Rahav E
    Mar Pollut Bull; 2019 Sep; 146():355-365. PubMed ID: 31426168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drivers of interannual variability in virioplankton abundance at the coastal western Antarctic peninsula and the potential effects of climate change.
    Evans C; Brandsma J; Pond DW; Venables HJ; Meredith MP; Witte HJ; Stammerjohn S; Wilson WH; Clarke A; Brussaard CP
    Environ Microbiol; 2017 Feb; 19(2):740-755. PubMed ID: 27902869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.