These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 26023359)

  • 21. Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells.
    Schützhold V; Fandrey J; Prost-Fingerle K
    Methods Mol Biol; 2018; 1742():45-53. PubMed ID: 29330789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients.
    Kelleher MT; Fruhwirth G; Patel G; Ofo E; Festy F; Barber PR; Ameer-Beg SM; Vojnovic B; Gillett C; Coolen A; Kéri G; Ellis PA; Ng T
    Target Oncol; 2009 Sep; 4(3):235-52. PubMed ID: 19756916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FLIM-FRET analyzer: open source software for automation of lifetime-based FRET analysis.
    Kim J; Tsoy Y; Persson J; Grailhe R
    Source Code Biol Med; 2017; 12():7. PubMed ID: 29142589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring.
    Ouyang Y; Liu Y; Wang ZM; Liu Z; Wu M
    Nanomicro Lett; 2021 Jun; 13(1):133. PubMed ID: 34138374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time.
    Andrews N; Ramel MC; Kumar S; Alexandrov Y; Kelly DJ; Warren SC; Kerry L; Lockwood N; Frolov A; Frankel P; Bugeon L; McGinty J; Dallman MJ; French PM
    J Biophotonics; 2016 Apr; 9(4):414-24. PubMed ID: 26753623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
    Omer T; Intes X; Hahn J
    PLoS One; 2015; 10(12):e0144421. PubMed ID: 26658308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studying Protein-Protein Interactions In Planta Using Advanced Fluorescence Microscopy.
    Somssich M; Simon R
    Methods Mol Biol; 2017; 1610():267-285. PubMed ID: 28439869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global analysis of FRET-FLIM data in live plant cells.
    Laptenok SP; Snellenburg JJ; Bücherl CA; Konrad KR; Borst JW
    Methods Mol Biol; 2014; 1076():481-502. PubMed ID: 24108640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse.
    McGinty J; Stuckey DW; Soloviev VY; Laine R; Wylezinska-Arridge M; Wells DJ; Arridge SR; French PM; Hajnal JV; Sardini A
    Biomed Opt Express; 2011 Jul; 2(7):1907-17. PubMed ID: 21750768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence lifetime imaging microscopy (FLIM).
    van Munster EB; Gadella TW
    Adv Biochem Eng Biotechnol; 2005; 95():143-75. PubMed ID: 16080268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.
    Byrne RD; Larijani B; Poccia DL
    Methods Mol Biol; 2016; 1411():123-32. PubMed ID: 27147038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-domain fluorescence lifetime imaging microscopy: a quantitative method to follow transient protein-protein interactions in living cells.
    Padilla-Parra S; Audugé N; Tramier M; Coppey-Moisan M
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):508-21. PubMed ID: 26034312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating protein-protein interactions in the plant endomembrane system using multiphoton-induced FRET-FLIM.
    Schoberer J; Botchway SW
    Methods Mol Biol; 2014; 1209():81-95. PubMed ID: 25117276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET.
    Zhong W; Wu M; Chang CW; Merrick KA; Merajver SD; Mycek MA
    Opt Express; 2007 Dec; 15(26):18220-35. PubMed ID: 19551120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing protein-protein Interactions with FRET-FLIM.
    Bücherl C; Aker J; de Vries S; Borst JW
    Methods Mol Biol; 2010; 655():389-99. PubMed ID: 20734275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence lifetime imaging microscopy for quantitative biological imaging.
    Chen LC; Lloyd WR; Chang CW; Sud D; Mycek MA
    Methods Cell Biol; 2013; 114():457-88. PubMed ID: 23931519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell.
    Elangovan M; Day RN; Periasamy A
    J Microsc; 2002 Jan; 205(Pt 1):3-14. PubMed ID: 11856376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of Gate Width Size on Lifetime-Based Förster Resonance Energy Transfer Parameter Estimation.
    Chen SJ; Sinsuebphon N; Intes X
    Photonics; 2015 Dec; 2(4):1027-1042. PubMed ID: 26557647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation.
    Verboogen DRJ; González Mancha N; Ter Beest M; van den Bogaart G
    Elife; 2017 May; 6():. PubMed ID: 28524818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.