These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26023800)

  • 1. Accumulation and Distribution of Lead and Chromium in Laboratory-Scale Constructed Wetlands Inoculated with Metal-Tolerant Bacteria.
    Amabilis-Sosa LE; Siebe C; Moeller-Chávez G; Durán-Domínguez-de-Bazúa Mdel C
    Int J Phytoremediation; 2015; 17(11):1090-6. PubMed ID: 26023800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of Water Using Phragmites karka and Veteveria nigritana in Constructed Wetland.
    Badejo AA; Sridhar MK; Coker AO; Ndambuki JM; Kupolati WK
    Int J Phytoremediation; 2015; 17(9):847-52. PubMed ID: 26151537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium removal efficiency of plant, microbe and media in experimental VSSF constructed wetlands under monocropped and co-cropped conditions.
    Kumar P; Kaur R; Celestin D; Kumar P
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2071-2086. PubMed ID: 31773522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of chromium by model constructed wetland.
    Mant C; Costa S; Williams J; Tambourgi E
    Bioresour Technol; 2006 Oct; 97(15):1767-72. PubMed ID: 16256345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands.
    Ranieri E; Young TM
    J Contam Hydrol; 2012 Mar; 129-130():38-45. PubMed ID: 22304895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of constructed wetland systems for treating tannery industrial wastewater.
    Kaseva ME; Mbuligwe SE
    Water Sci Technol; 2010; 61(4):1043-52. PubMed ID: 20182085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland.
    Liu J; Dong Y; Xu H; Wang D; Xu J
    J Hazard Mater; 2007 Aug; 147(3):947-53. PubMed ID: 17353090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.
    Arivoli A; Mohanraj R; Seenivasan R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13336-43. PubMed ID: 25940487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.
    Sochacki A; Guy B; Faure O; Surmacz-Górska J
    Int J Phytoremediation; 2015; 17(11):1068-72. PubMed ID: 25848916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of patent bio-rack wetland system using Phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts.
    Valipour A; Raman VK; Ghole VS
    J Environ Sci Eng; 2011 Jul; 53(3):281-8. PubMed ID: 23029929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):404-14. PubMed ID: 18214580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainability of a constructed wetland faced with a depredation event.
    Maine MA; Hadad HR; Sánchez GC; Mufarrege MM; Di Luca GA; Caffaratti SE; Pedro MC
    J Environ Manage; 2013 Oct; 128():1-6. PubMed ID: 23694854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.
    Fibbi D; Doumett S; Lepri L; Checchini L; Gonnelli C; Coppini E; Del Bubba M
    J Hazard Mater; 2012 Jan; 199-200():209-16. PubMed ID: 22104764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media.
    Carvalho PN; Basto MC; Almeida CM
    Bioresour Technol; 2012 Jul; 116():497-501. PubMed ID: 22522014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polishing domestic wastewater on a subsurface flow constructed wetland: organic matter removal and microbial monitoring.
    Aguiar-Pinto Mina I; Costa M; Matos A; Sousa Coutinho Calheiros C; Castro PM
    Int J Phytoremediation; 2011; 13(10):947-58. PubMed ID: 21972563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of organic pollutants from oak leachate in pilot scale wetland systems: How efficient are aeration and vegetation treatments?
    Svensson H; Ekstam B; Marques M; Hogland W
    Water Res; 2015 Nov; 84():120-6. PubMed ID: 26218465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.