These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 26023844)

  • 1. Non-standard Hubbard models in optical lattices: a review.
    Dutta O; Gajda M; Hauke P; Lewenstein M; Lühmann DS; Malomed BA; Sowiński T; Zakrzewski J
    Rep Prog Phys; 2015 Jun; 78(6):066001. PubMed ID: 26023844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice.
    Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A
    Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices.
    Trotzky S; Cheinet P; Fölling S; Feld M; Schnorrberger U; Rey AM; Polkovnikov A; Demler EA; Lukin MD; Bloch I
    Science; 2008 Jan; 319(5861):295-9. PubMed ID: 18096767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum phases of the extended Bose-Hubbard hamiltonian: possibility of a supersolid state of cold atoms in optical lattices.
    Scarola VW; Das Sarma S
    Phys Rev Lett; 2005 Jul; 95(3):033003. PubMed ID: 16090740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast dynamics for atoms in optical lattices.
    Łącki M; Zakrzewski J
    Phys Rev Lett; 2013 Feb; 110(6):065301. PubMed ID: 23432268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP; Katsnelson MI
    Phys Rev Lett; 2015 Aug; 115(7):075301. PubMed ID: 26317726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipolar molecules in optical lattices.
    Sowiński T; Dutta O; Hauke P; Tagliacozzo L; Lewenstein M
    Phys Rev Lett; 2012 Mar; 108(11):115301. PubMed ID: 22540482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable superfluidity of repulsive fermionic atoms in optical lattices.
    Rosch A; Rasch D; Binz B; Vojta M
    Phys Rev Lett; 2008 Dec; 101(26):265301. PubMed ID: 19437648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
    Boll M; Hilker TA; Salomon G; Omran A; Nespolo J; Pollet L; Bloch I; Gross C
    Science; 2016 Sep; 353(6305):1257-60. PubMed ID: 27634528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hubbard-U band-structure methods.
    Albers RC; Christensen NE; Svane A
    J Phys Condens Matter; 2009 Aug; 21(34):343201. PubMed ID: 21715775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wannier functions using a discrete variable representation for optical lattices.
    Paul S; Tiesinga E
    Phys Rev A (Coll Park); 2016 Sep; 94(3):. PubMed ID: 29876532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum entangled dark solitons formed by ultracold atoms in optical lattices.
    Mishmash RV; Carr LD
    Phys Rev Lett; 2009 Oct; 103(14):140403. PubMed ID: 19905550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
    Meinert F; Mark MJ; Lauber K; Daley AJ; Nägerl HC
    Phys Rev Lett; 2016 May; 116(20):205301. PubMed ID: 27258874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices.
    Alon OE; Streltsov AI; Cederbaum LS
    Phys Rev Lett; 2005 Jul; 95(3):030405. PubMed ID: 16090725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Bose-Hubbard model with dipolar excitons.
    Lagoin C; Bhattacharya U; Grass T; Chhajlany RW; Salamon T; Baldwin K; Pfeiffer L; Lewenstein M; Holzmann M; Dubin F
    Nature; 2022 Sep; 609(7927):485-489. PubMed ID: 36104551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frustration and glassiness in spin models with cavity-mediated interactions.
    Gopalakrishnan S; Lev BL; Goldbart PM
    Phys Rev Lett; 2011 Dec; 107(27):277201. PubMed ID: 22243326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation on demand of higher orbital states in a vibrating optical lattice.
    Sowiński T
    Phys Rev Lett; 2012 Apr; 108(16):165301. PubMed ID: 22680731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum simulation of the Hubbard model with dopant atoms in silicon.
    Salfi J; Mol JA; Rahman R; Klimeck G; Simmons MY; Hollenberg LC; Rogge S
    Nat Commun; 2016 Apr; 7():11342. PubMed ID: 27094205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices?
    Cramer M; Ospelkaus S; Ospelkaus C; Bongs K; Sengstock K; Eisert J
    Phys Rev Lett; 2008 Apr; 100(14):140409. PubMed ID: 18518014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.