BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26023968)

  • 1. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of systematic tile drainage to watershed-scale phosphorus transport.
    King KW; Williams MR; Fausey NR
    J Environ Qual; 2015 Mar; 44(2):486-94. PubMed ID: 26023967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the potential for saturated buffers in northwest Ohio to remediate nutrients from agricultural runoff.
    Jacquemin SJ; McGlinch G; Dirksen T; Clayton A
    PeerJ; 2020; 8():e9007. PubMed ID: 32341902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed.
    Hanrahan BR; Tank JL; Speir SL; Trentman MT; Christopher SF; Mahl UH; Royer TV
    Sci Total Environ; 2021 Dec; 801():149501. PubMed ID: 34438141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
    Jarvie HP; Johnson LT; Sharpley AN; Smith DR; Baker DB; Bruulsema TW; Confesor R
    J Environ Qual; 2017 Jan; 46(1):123-132. PubMed ID: 28177409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus transport in agricultural subsurface drainage: a review.
    King KW; Williams MR; Macrae ML; Fausey NR; Frankenberger J; Smith DR; Kleinman PJ; Brown LC
    J Environ Qual; 2015 Mar; 44(2):467-85. PubMed ID: 26023966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supply and Transport Limitations on Phosphorus Losses from Agricultural Fields in the Lower Great Lakes Region, Canada.
    Plach JM; Macrae ML; Ali GA; Brunke RR; English MC; Ferguson G; Lam WV; Lozier TM; McKague K; O'Halloran IP; Opolko G; Van Esbroeck CJ
    J Environ Qual; 2018 Jan; 47(1):96-105. PubMed ID: 29415113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA.
    Algoazany AS; Kalita PK; Czapar GF; Mitchell JK
    J Environ Qual; 2007; 36(3):681-93. PubMed ID: 17412904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
    Ford WI; King KW; Williams MR; Confesor RB
    J Environ Qual; 2017 Nov; 46(6):1413-1423. PubMed ID: 29293822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using AnnAGNPS to Predict the Effects of Tile Drainage Control on Nutrient and Sediment Loads for a River Basin.
    Que Z; Seidou O; Droste RL; Wilkes G; Sunohara M; Topp E; Lapen DR
    J Environ Qual; 2015 Mar; 44(2):629-41. PubMed ID: 26023981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Overland and Tile Flow to Runoff and Nutrient Losses from Vertisols in Manitoba, Canada.
    Kokulan V; Macrae ML; Lobb DA; Ali GA
    J Environ Qual; 2019 Jul; 48(4):959-965. PubMed ID: 31589685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tile Drainage as a Hydrologic Pathway for Phosphorus Export from an Agricultural Subwatershed.
    Michaud AR; Poirier SC; Whalen JK
    J Environ Qual; 2019 Jan; 48(1):64-72. PubMed ID: 30640348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds?
    Wilkes G; Sunohara MD; Topp E; Gottschall N; Craiovan E; Frey SK; Lapen DR
    Water Res; 2019 Mar; 151():423-438. PubMed ID: 30639728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.
    Zhang TQ; Tan CS; Wang YT; Ma BL; Welacky T
    Sci Total Environ; 2017 Feb; 580():9-16. PubMed ID: 27939997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term Cropping Effects on Partitioning of Water Flow and Nitrate Loss between Surface Runoff and Tile Drainage.
    Woodley AL; Drury CF; Reynolds WD; Tan CS; Yang XM; Oloya TO
    J Environ Qual; 2018 Jul; 47(4):820-829. PubMed ID: 30025062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.
    Drury CF; Tan CS; Welacky TW; Reynolds WD; Zhang TQ; Oloya TO; McLaughlin NB; Gaynor JD
    J Environ Qual; 2014 Mar; 43(2):587-98. PubMed ID: 25602660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.