These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26023980)

  • 1. Applicability of models to predict phosphorus losses in drained fields: a review.
    Radcliffe DE; Reid DK; Blombäck K; Bolster CH; Collick AS; Easton ZM; Francesconi W; Fuka DR; Johnsson H; King K; Larsbo M; Youssef MA; Mulkey AS; Nelson NO; Persson K; Ramirez-Avila JJ; Schmieder F; Smith DR
    J Environ Qual; 2015 Mar; 44(2):614-28. PubMed ID: 26023980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P.
    Sadhukhan D; Qi Z; Zhang TQ; Tan CS; Ma L
    J Environ Qual; 2019 Jul; 48(4):995-1005. PubMed ID: 31589663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.
    Moriasi DN; Gowda PH; Arnold JG; Mulla DJ; Ale S; Steiner JL; Tomer MD
    J Environ Qual; 2013 Nov; 42(6):1699-710. PubMed ID: 25602410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus fate, management, and modeling in artificially drained systems.
    Kleinman PJ; Smith DR; Bolster CH; Easton ZM
    J Environ Qual; 2015 Mar; 44(2):460-6. PubMed ID: 26023965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of simulated strategies for reducing nitrate-nitrogen losses through subsurface drainage systems.
    Ale S; Bowling LC; Youssef MA; Brouder SM
    J Environ Qual; 2012; 41(1):217-28. PubMed ID: 22218190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus transport in agricultural subsurface drainage: a review.
    King KW; Williams MR; Macrae ML; Fausey NR; Frankenberger J; Smith DR; Kleinman PJ; Brown LC
    J Environ Qual; 2015 Mar; 44(2):467-85. PubMed ID: 26023966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
    Ford WI; King KW; Williams MR; Confesor RB
    J Environ Qual; 2017 Nov; 46(6):1413-1423. PubMed ID: 29293822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.
    Reid DK; Ball B; Zhang TQ
    J Environ Qual; 2012; 41(6):1720-9. PubMed ID: 23128729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Overland and Tile Flow to Runoff and Nutrient Losses from Vertisols in Manitoba, Canada.
    Kokulan V; Macrae ML; Lobb DA; Ali GA
    J Environ Qual; 2019 Jul; 48(4):959-965. PubMed ID: 31589685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling water outflow from tile-drained agricultural fields.
    Kuzmanovski V; Trajanov A; Leprince F; Džeroski S; Debeljak M
    Sci Total Environ; 2015 Feb; 505():390-401. PubMed ID: 25461041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Hydrologic Response in Tile-Drained Landscapes: Implications for Phosphorus Transport.
    Macrae ML; Ali GA; King KW; Plach JM; Pluer WT; Williams M; Morison MQ; Tang W
    J Environ Qual; 2019 Sep; 48(5):1347-1355. PubMed ID: 31589707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields.
    Jaynes DB; Kaspar TC; Moorman TB; Parkin TB
    J Environ Qual; 2008; 37(2):429-36. PubMed ID: 18268306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT.
    Guo T; Cibin R; Chaubey I; Gitau M; Arnold JG; Srinivasan R; Kiniry JR; Engel BA
    Sci Total Environ; 2018 Feb; 613-614():724-735. PubMed ID: 28938215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field evaluation of a model for predicting nitrogen losses from drained lands.
    Youssef MA; Skaggs RW; Chescheir GM; Gilliam JW
    J Environ Qual; 2006; 35(6):2026-42. PubMed ID: 17071872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Important factors when simulating the water and nitrogen balance in a tile-drained agricultural field under long-term monitoring.
    Motarjemi SK; Rosenbom AE; Iversen BV; Plauborg F
    Sci Total Environ; 2021 Sep; 787():147610. PubMed ID: 34004535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tile drainage phosphorus loss with long-term consistent cropping systems and fertilization.
    Zhang TQ; Tan CS; Zheng ZM; Drury CF
    J Environ Qual; 2015 Mar; 44(2):503-11. PubMed ID: 26023969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.