These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 26024201)
1. Pressure and phase equilibria in interacting active brownian spheres. Solon AP; Stenhammar J; Wittkowski R; Kardar M; Kafri Y; Cates ME; Tailleur J Phys Rev Lett; 2015 May; 114(19):198301. PubMed ID: 26024201 [TBL] [Abstract][Full Text] [Related]
2. Phase coexistence of active Brownian particles. Hermann S; Krinninger P; de Las Heras D; Schmidt M Phys Rev E; 2019 Nov; 100(5-1):052604. PubMed ID: 31869869 [TBL] [Abstract][Full Text] [Related]
3. Virial pressure in systems of spherical active Brownian particles. Winkler RG; Wysocki A; Gompper G Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908 [TBL] [Abstract][Full Text] [Related]
4. Predicting the phase behavior of mixtures of active spherical particles. van der Meer B; Prymidis V; Dijkstra M; Filion L J Chem Phys; 2020 Apr; 152(14):144901. PubMed ID: 32295380 [TBL] [Abstract][Full Text] [Related]
5. Active Brownian equation of state: metastability and phase coexistence. Levis D; Codina J; Pagonabarraga I Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of active Brownian disks: van der Waals theory and analytical results. Speck T Phys Rev E; 2021 Jan; 103(1-1):012607. PubMed ID: 33601548 [TBL] [Abstract][Full Text] [Related]
7. Continuum theory of phase separation kinetics for active Brownian particles. Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255 [TBL] [Abstract][Full Text] [Related]
8. Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Das S; Gompper G; Winkler RG Sci Rep; 2019 Apr; 9(1):6608. PubMed ID: 31036857 [TBL] [Abstract][Full Text] [Related]
9. Phase behavior and surface tension of soft active Brownian particles. Lauersdorf N; Kolb T; Moradi M; Nazockdast E; Klotsa D Soft Matter; 2021 Jul; 17(26):6337-6351. PubMed ID: 34128024 [TBL] [Abstract][Full Text] [Related]
10. Solvent mediated interactions between model colloids and interfaces: a microscopic approach. Hopkins P; Archer AJ; Evans R J Chem Phys; 2009 Sep; 131(12):124704. PubMed ID: 19791909 [TBL] [Abstract][Full Text] [Related]
11. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation. Omar AK; Klymko K; GrandPre T; Geissler PL Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789 [TBL] [Abstract][Full Text] [Related]
12. Clustering and phase separation in mixtures of dipolar and active particles. Maloney RC; Liao GJ; Klapp SHL; Hall CK Soft Matter; 2020 Apr; 16(15):3779-3791. PubMed ID: 32239046 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119 [TBL] [Abstract][Full Text] [Related]
15. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles. Speck T; Menzel AM; Bialké J; Löwen H J Chem Phys; 2015 Jun; 142(22):224109. PubMed ID: 26071703 [TBL] [Abstract][Full Text] [Related]
16. Active Brownian particles in external force fields: Field-theoretical models, generalized barometric law, and programmable density patterns. Bickmann J; Bröker S; Te Vrugt M; Wittkowski R Phys Rev E; 2023 Oct; 108(4-1):044601. PubMed ID: 37978644 [TBL] [Abstract][Full Text] [Related]
17. Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME Phys Rev Lett; 2015 Jan; 114(1):018301. PubMed ID: 25615509 [TBL] [Abstract][Full Text] [Related]
18. Whirligig beetles as corralled active Brownian particles. Devereux HL; Twomey CR; Turner MS; Thutupalli S J R Soc Interface; 2021 Apr; 18(177):20210114. PubMed ID: 33849331 [TBL] [Abstract][Full Text] [Related]
19. The van Hove distribution function for brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics. Hopkins P; Fortini A; Archer AJ; Schmidt M J Chem Phys; 2010 Dec; 133(22):224505. PubMed ID: 21171689 [TBL] [Abstract][Full Text] [Related]
20. Predictive local field theory for interacting active Brownian spheres in two spatial dimensions. Bickmann J; Wittkowski R J Phys Condens Matter; 2020 May; 32(21):214001. PubMed ID: 31791019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]