These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid. Das SP; Yoshimori A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043008. PubMed ID: 24229277 [TBL] [Abstract][Full Text] [Related]
23. Analytical approach to chiral active systems: Suppressed phase separation of interacting Brownian circle swimmers. Bickmann J; Bröker S; Jeggle J; Wittkowski R J Chem Phys; 2022 May; 156(19):194904. PubMed ID: 35597664 [TBL] [Abstract][Full Text] [Related]
24. Phase Coexistence and Edge Currents in the Chiral Lennard-Jones Fluid. Caporusso CB; Gonnella G; Levis D Phys Rev Lett; 2024 Apr; 132(16):168201. PubMed ID: 38701478 [TBL] [Abstract][Full Text] [Related]
25. Mechanical theory of nonequilibrium coexistence and motility-induced phase separation. Omar AK; Row H; Mallory SA; Brady JF Proc Natl Acad Sci U S A; 2023 May; 120(18):e2219900120. PubMed ID: 37094152 [TBL] [Abstract][Full Text] [Related]
26. Two interacting particles in a spherical pore. Urrutia I; Castelletti G J Chem Phys; 2011 Feb; 134(6):064508. PubMed ID: 21322706 [TBL] [Abstract][Full Text] [Related]
27. Transport and phase separation of active Brownian particles in fluctuating environments. Khadem SMJ; Siboni NH; Klapp SHL Phys Rev E; 2021 Dec; 104(6-1):064615. PubMed ID: 35030915 [TBL] [Abstract][Full Text] [Related]
28. Kinetics of motility-induced phase separation and swim pressure. Patch A; Yllanes D; Marchetti MC Phys Rev E; 2017 Jan; 95(1-1):012601. PubMed ID: 28208385 [TBL] [Abstract][Full Text] [Related]
30. Clustering and phase behaviour of attractive active particles with hydrodynamics. Navarro RM; Fielding SM Soft Matter; 2015 Oct; 11(38):7525-46. PubMed ID: 26278520 [TBL] [Abstract][Full Text] [Related]
31. Pair-distribution function of active Brownian spheres in three spatial dimensions: simulation results and analytical representation. Bröker S; Te Vrugt M; Jeggle J; Stenhammar J; Wittkowski R Soft Matter; 2023 Dec; 20(1):224-244. PubMed ID: 38078539 [TBL] [Abstract][Full Text] [Related]
32. Pair-distribution function of active Brownian spheres in two spatial dimensions: Simulation results and analytic representation. Jeggle J; Stenhammar J; Wittkowski R J Chem Phys; 2020 May; 152(19):194903. PubMed ID: 33687241 [TBL] [Abstract][Full Text] [Related]
33. Stochastic resetting of active Brownian particles with Lorentz force. Abdoli I; Sharma A Soft Matter; 2021 Feb; 17(5):1307-1316. PubMed ID: 33313625 [TBL] [Abstract][Full Text] [Related]
34. Collective dynamics in systems of active Brownian particles with dissipative interactions. Lobaskin V; Romenskyy M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515 [TBL] [Abstract][Full Text] [Related]
35. Lack of an equation of state for the nonequilibrium chemical potential of gases of active particles in contact. Guioth J; Bertin E J Chem Phys; 2019 Mar; 150(9):094108. PubMed ID: 30849910 [TBL] [Abstract][Full Text] [Related]
36. Liquid-hexatic-solid phases in active and passive Brownian particles determined by stochastic birth and death events. Almodóvar A; Galla T; López C Phys Rev E; 2022 Nov; 106(5-1):054130. PubMed ID: 36559396 [TBL] [Abstract][Full Text] [Related]
37. Phase behavior of active Brownian disks, spheres, and dimers. Siebert JT; Letz J; Speck T; Virnau P Soft Matter; 2017 Feb; 13(5):1020-1026. PubMed ID: 28083593 [TBL] [Abstract][Full Text] [Related]
38. Survival of interacting Brownian particles in crowded one-dimensional environment. Ryabov A; Chvosta P J Chem Phys; 2012 Feb; 136(6):064114. PubMed ID: 22360176 [TBL] [Abstract][Full Text] [Related]
39. Transverse gradient diffusion in a polydisperse dilute suspension of magnetic spheres during sedimentation. Cunha FR; Couto HL J Phys Condens Matter; 2008 May; 20(20):204129. PubMed ID: 21694258 [TBL] [Abstract][Full Text] [Related]