These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 26024239)
21. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Patel N; Thakkar V; Metalia V; Baldaniya L; Gandhi T; Gohel M Drug Dev Ind Pharm; 2016 Sep; 42(9):1406-23. PubMed ID: 26716613 [TBL] [Abstract][Full Text] [Related]
22. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: In vitro drug release and in vivo tissue distribution. Wei Y; Li C; Zhu Q; Zhang X; Guan J; Mao S Int J Pharm; 2020 Mar; 578():119184. PubMed ID: 32112932 [TBL] [Abstract][Full Text] [Related]
24. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Li M; Xin M; Guo C; Lin G; Wu X Drug Dev Ind Pharm; 2017 Nov; 43(11):1846-1857. PubMed ID: 28665151 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. He W; Guo X; Feng M; Mao N Int J Pharm; 2013 Dec; 458(2):305-14. PubMed ID: 24409520 [TBL] [Abstract][Full Text] [Related]
26. Nanostructured lipid carriers based nanogel for meloxicam delivery: mechanistic, in-vivo and stability evaluation. Khurana S; Jain NK; Bedi PM Drug Dev Ind Pharm; 2015; 41(8):1368-75. PubMed ID: 25151872 [TBL] [Abstract][Full Text] [Related]
27. Levofloxacin Hemihydrate In Situ Gelling Ophthalmic Solution: Formulation Optimization and In Vitro and In Vivo Evaluation. Bhalerao H; Koteshwara KB; Chandran S AAPS PharmSciTech; 2019 Aug; 20(7):272. PubMed ID: 31372767 [TBL] [Abstract][Full Text] [Related]
28. Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis, pharmacokinetics, and tumor growth inhibition. Wei X; Senanayake TH; Bohling A; Vinogradov SV Mol Pharm; 2014 Sep; 11(9):3112-22. PubMed ID: 25072100 [TBL] [Abstract][Full Text] [Related]
29. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Li J; Tan G; Cheng B; Liu D; Pan W Eur J Pharm Biopharm; 2017 Nov; 120():89-97. PubMed ID: 28867370 [TBL] [Abstract][Full Text] [Related]
31. Curcumin-guided nanotherapy: a lipid-based nanomedicine for targeted drug delivery in breast cancer therapy. Lin M; Teng L; Wang Y; Zhang J; Sun X Drug Deliv; 2016 May; 23(4):1420-5. PubMed ID: 26203688 [TBL] [Abstract][Full Text] [Related]
32. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Sun F; Zheng Z; Lan J; Li X; Li M; Song K; Wu X Drug Deliv; 2019 Dec; 26(1):575-585. PubMed ID: 31172843 [TBL] [Abstract][Full Text] [Related]
33. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Asasutjarit R; Thanasanchokpibull S; Fuongfuchat A; Veeranondha S Int J Pharm; 2011 Jun; 411(1-2):128-35. PubMed ID: 21459137 [TBL] [Abstract][Full Text] [Related]
34. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Zeng W; Li Q; Wan T; Liu C; Pan W; Wu Z; Zhang G; Pan J; Qin M; Lin Y; Wu C; Xu Y Colloids Surf B Biointerfaces; 2016 May; 141():28-35. PubMed ID: 26820107 [TBL] [Abstract][Full Text] [Related]
35. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Li X; Nie SF; Kong J; Li N; Ju CY; Pan WS Int J Pharm; 2008 Nov; 363(1-2):177-82. PubMed ID: 18706987 [TBL] [Abstract][Full Text] [Related]
36. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Tian C; Asghar S; Wu Y; Chen Z; Jin X; Yin L; Huang L; Ping Q; Xiao Y Int J Nanomedicine; 2017; 12():7897-7911. PubMed ID: 29138557 [TBL] [Abstract][Full Text] [Related]
37. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Cao Y; Zhang C; Shen W; Cheng Z; Yu LL; Ping Q J Control Release; 2007 Jul; 120(3):186-94. PubMed ID: 17582643 [TBL] [Abstract][Full Text] [Related]
38. Development of a Thermosensitive In-Situ Gel Formulations of Vancomycin Hydrochloride: Design, Preparation, In Vitro and In Vivo Evaluation. Bai L; Lei F; Luo R; Fei Q; Zheng Z; He N; Gui S J Pharm Sci; 2022 Sep; 111(9):2552-2561. PubMed ID: 35461804 [TBL] [Abstract][Full Text] [Related]
39. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study. Rupenthal ID; Green CR; Alany RG Int J Pharm; 2011 Jun; 411(1-2):78-85. PubMed ID: 21453763 [TBL] [Abstract][Full Text] [Related]
40. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Noreen S; Ghumman SA; Batool F; Ijaz B; Basharat M; Noureen S; Kausar T; Iqbal S Int J Biol Macromol; 2020 Jun; 152():1056-1067. PubMed ID: 31751751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]