These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26024255)

  • 1. Soil phosphorus landscape models for precision soil conservation.
    Hong J; Grunwald S; Vasques GM
    J Environ Qual; 2015 May; 44(3):739-53. PubMed ID: 26024255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping soil textural fractions across a large watershed in north-east Florida.
    Lamsal S; Mishra U
    J Environ Manage; 2010 Aug; 91(8):1686-94. PubMed ID: 20434829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape.
    Zhang W; Wang K; Chen H; He X; Zhang J
    J Sci Food Agric; 2012 Mar; 92(5):1094-102. PubMed ID: 22297926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of land use changes on some soil properties in Indaği Mountain Pass--Cankiri, Turkey.
    Başaran M; Erpul G; Tercan AE; Canga MR
    Environ Monit Assess; 2008 Jan; 136(1-3):101-19. PubMed ID: 17562213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.
    Ahmed ZU; Panaullah GM; DeGloria SD; Duxbury JM
    Sci Total Environ; 2011 Dec; 412-413():324-35. PubMed ID: 22055452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the spatial distribution of soil properties in a northern Everglades marsh.
    Corstanje R; Grunwald S; Reddy KR; Osborne TZ; Newman S
    J Environ Qual; 2006; 35(3):938-49. PubMed ID: 16641332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping geogenic radon potential by regression kriging.
    Pásztor L; Szabó KZ; Szatmári G; Laborczi A; Horváth Á
    Sci Total Environ; 2016 Feb; 544():883-91. PubMed ID: 26706761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of changes in land use and landscape patterns on soil erosion in a watershed.
    Zhang S; Fan W; Li Y; Yi Y
    Sci Total Environ; 2017 Jan; 574():34-45. PubMed ID: 27623525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new detailed map of total phosphorus stocks in Australian soil.
    Viscarra Rossel RA; Bui EN
    Sci Total Environ; 2016 Jan; 542(Pt B):1040-9. PubMed ID: 26520615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental drivers of spatial patterns of topsoil nitrogen and phosphorus under monsoon conditions in a complex terrain of South Korea.
    Jeong G; Choi K; Spohn M; Park SJ; Huwe B; Ließ M
    PLoS One; 2017; 12(8):e0183205. PubMed ID: 28837590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.
    Martínez-Murillo JF; Hueso-González P; Ruiz-Sinoga JD
    Sci Total Environ; 2017 Oct; 595():400-412. PubMed ID: 28391145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.
    Lin C; Ma R; Xiong J
    Sci Total Environ; 2018 Jul; 628-629():870-881. PubMed ID: 29455137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].
    Liu Y; Wu BF; Zeng Y; Zhang L
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2581-9. PubMed ID: 24417118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.
    Aksoy E; Yigini Y; Montanarella L
    PLoS One; 2016; 11(3):e0152098. PubMed ID: 27011357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine resolution map of top- and subsoil carbon sequestration potential in France.
    Chen S; Martin MP; Saby NPA; Walter C; Angers DA; Arrouays D
    Sci Total Environ; 2018 Jul; 630():389-400. PubMed ID: 29482147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters.
    Zhou B; Vogt RD; Lu X; Yang X; Lü C; Mohr CW; Zhu L
    Environ Sci Process Impacts; 2015 Aug; 17(8):1443-54. PubMed ID: 26151813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial prediction of soil depth using environmental covariates by quantile regression forest model.
    Lalitha M; Dharumarajan S; Suputhra A; Kalaiselvi B; Hegde R; Reddy RS; Prasad CRS; Harindranath CS; Dwivedi BS
    Environ Monit Assess; 2021 Sep; 193(10):660. PubMed ID: 34535809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus and other soil components in a dairy effluent sprayfield within the central Florida Ridge.
    Woodard KR; Sollenberger LE; Sweat LA; Graetz DA; Nair VD; Rymph SJ; Walker L; Joo Y
    J Environ Qual; 2007; 36(4):1042-9. PubMed ID: 17526883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.