These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 26024323)
1. Synthesis and Ligand Exchange of Thiol-Capped Silicon Nanocrystals. Yu Y; Rowland CE; Schaller RD; Korgel BA Langmuir; 2015 Jun; 31(24):6886-93. PubMed ID: 26024323 [TBL] [Abstract][Full Text] [Related]
2. Controlled Styrene Monolayer Capping of Silicon Nanocrystals by Room Temperature Hydrosilylation. Yu Y; Korgel BA Langmuir; 2015 Jun; 31(23):6532-7. PubMed ID: 26010097 [TBL] [Abstract][Full Text] [Related]
3. Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction. Robidillo CJT; Aghajamali M; Faramus A; Sinelnikov R; Veinot JGC Nanoscale; 2018 Oct; 10(39):18706-18719. PubMed ID: 30270384 [TBL] [Abstract][Full Text] [Related]
4. Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. van Oversteeg CHM; Oropeza FE; Hofmann JP; Hensen EJM; de Jongh PE; de Mello Donega C Chem Mater; 2019 Jan; 31(2):541-552. PubMed ID: 30686859 [TBL] [Abstract][Full Text] [Related]
5. Size-dependent reactivity in hydrosilylation of silicon nanocrystals. Kelly JA; Shukaliak AM; Fleischauer MD; Veinot JG J Am Chem Soc; 2011 Jun; 133(24):9564-71. PubMed ID: 21595468 [TBL] [Abstract][Full Text] [Related]
6. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. Dasog M; De los Reyes GB; Titova LV; Hegmann FA; Veinot JG ACS Nano; 2014 Sep; 8(9):9636-48. PubMed ID: 25183018 [TBL] [Abstract][Full Text] [Related]
7. Alkoxy-Terminated Si Surfaces: A New Reactive Platform for the Functionalization and Derivatization of Silicon Quantum Dots. Purkait TK; Iqbal M; Islam MA; Mobarok MH; Gonzalez CM; Hadidi L; Veinot JG J Am Chem Soc; 2016 Jun; 138(22):7114-20. PubMed ID: 27195971 [TBL] [Abstract][Full Text] [Related]
8. Thermally induced hydrosilylation at deuterium-terminated silicon nanoparticles: an investigation of the radical chain propagation mechanism. Holm J; Roberts JT Langmuir; 2009 Jun; 25(12):7050-6. PubMed ID: 19425604 [TBL] [Abstract][Full Text] [Related]
9. Surface-induced alkene oligomerization: does thermal hydrosilylation really lead to monolayer protected silicon nanocrystals? Yang Z; Iqbal M; Dobbie AR; Veinot JG J Am Chem Soc; 2013 Nov; 135(46):17595-601. PubMed ID: 24164590 [TBL] [Abstract][Full Text] [Related]
10. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure. Kůsová K; Cibulka O; Dohnalová K; Pelant I; Valenta J; Fucíková A; Zídek K; Lang J; Englich J; Matejka P; Stepánek P; Bakardjieva S ACS Nano; 2010 Aug; 4(8):4495-504. PubMed ID: 20690596 [TBL] [Abstract][Full Text] [Related]
11. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals. Jariwala BN; Dewey OS; Stradins P; Ciobanu CV; Agarwal S ACS Appl Mater Interfaces; 2011 Aug; 3(8):3033-41. PubMed ID: 21774486 [TBL] [Abstract][Full Text] [Related]
12. Crystal-bound vs surface-bound thiols on nanocrystals. Turo MJ; Macdonald JE ACS Nano; 2014 Oct; 8(10):10205-13. PubMed ID: 25219599 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of thiol capped CdS nanocrystallites using microwave irradiation and studies on their steady state and time resolved photoluminescence. Majumder M; Karan S; Chakraborty AK; Mallik B Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):115-21. PubMed ID: 20362490 [TBL] [Abstract][Full Text] [Related]
14. An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals. Kelly JA; Veinot JG ACS Nano; 2010 Aug; 4(8):4645-56. PubMed ID: 20731446 [TBL] [Abstract][Full Text] [Related]
15. Size controlled synthesis of silicon nanocrystals using cationic surfactant templates. Linehan K; Doyle H Small; 2014 Feb; 10(3):584-90. PubMed ID: 24027115 [TBL] [Abstract][Full Text] [Related]
16. Formation of carboxy- and amide-terminated alkyl monolayers on Silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: construction of photoswitchable surfaces. Rück-Braun K; Petersen MÅ; Michalik F; Hebert A; Przyrembel D; Weber C; Ahmed SA; Kowarik S; Weinelt M Langmuir; 2013 Sep; 29(37):11758-69. PubMed ID: 23971741 [TBL] [Abstract][Full Text] [Related]
17. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals. Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. Ahire JH; Chambrier I; Mueller A; Bao Y; Chao Y ACS Appl Mater Interfaces; 2013 Aug; 5(15):7384-91. PubMed ID: 23815685 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers. Henderson EJ; Hessel CM; Veinot JG J Am Chem Soc; 2008 Mar; 130(11):3624-32. PubMed ID: 18302380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]