BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26024338)

  • 1. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway.
    Gao X; Hwang TC
    J Gen Physiol; 2016 May; 147(5):407-22. PubMed ID: 27114613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localizing a gate in CFTR.
    Gao X; Hwang TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
    Wang W; El Hiani Y; Rubaiy HN; Linsdell P
    Pflugers Arch; 2014 Mar; 466(3):477-90. PubMed ID: 23955087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic tuning of the pre- and post-hydrolytic open states in CFTR.
    Zhang J; Hwang TC
    J Gen Physiol; 2017 Mar; 149(3):355-372. PubMed ID: 28242630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7).
    Wang W; Linsdell P
    J Biol Chem; 2012 Mar; 287(13):10156-10165. PubMed ID: 22303012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2014 Oct; 289(41):28149-59. PubMed ID: 25143385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore.
    Alexander C; Ivetac A; Liu X; Norimatsu Y; Serrano JR; Landstrom A; Sansom M; Dawson DC
    Biochemistry; 2009 Oct; 48(42):10078-88. PubMed ID: 19754156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    Biochemistry; 2012 May; 51(19):3971-81. PubMed ID: 22545782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
    Wang W; Linsdell P
    Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.