These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26024419)

  • 1. Strong ferromagnetically-coupled spin valve sensor devices for droplet magnetofluidics.
    Lin G; Makarov D; Schmidt OG
    Sensors (Basel); 2015 May; 15(6):12526-38. PubMed ID: 26024419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets.
    Lin G; Makarov D; Medina-Sánchez M; Guix M; Baraban L; Cuniberti G; Schmidt OG
    Lab Chip; 2015 Jan; 15(1):216-24. PubMed ID: 25353316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrofluid-based reconfigurable optofluidic switches for integrated sensing and digital data storage.
    Gu Y; Valentino G; Mongeau E
    Appl Opt; 2014 Feb; 53(4):537-43. PubMed ID: 24514168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential microfluidic droplet processing for rapid DNA extraction.
    Pan X; Zeng S; Zhang Q; Lin B; Qin J
    Electrophoresis; 2011 Nov; 32(23):3399-405. PubMed ID: 22072434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-Field-Assisted Fabrication and Manipulation of Nonspherical Polymer Particles in Ferrofluid-Based Droplet Microfluidics.
    Zhu T; Cheng R; Sheppard GR; Locklin J; Mao L
    Langmuir; 2015 Aug; 31(31):8531-4. PubMed ID: 26212067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Orders of Magnitude Boost in the Detection Limit of Droplet-Based Micro-Magnetofluidics with Planar Hall Effect Sensors.
    Schütt J; Illing R; Volkov O; Kosub T; Granell PN; Nhalil H; Fassbender J; Klein L; Grosz A; Makarov D
    ACS Omega; 2020 Aug; 5(32):20609-20617. PubMed ID: 32832814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field tunability of optical microfiber taper integrated with ferrofluid.
    Miao Y; Wu J; Lin W; Zhang K; Yuan Y; Song B; Zhang H; Liu B; Yao J
    Opt Express; 2013 Dec; 21(24):29914-20. PubMed ID: 24514542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Trapping of Bacteria at Low Magnetic Fields.
    Wang ZM; Wu RG; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Jun; 6():26945. PubMed ID: 27254771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised discriminant analysis for droplet micro-magnetofluidics.
    Lin G; Fomin VM; Makarov D; Schmidt OG
    Microfluid Nanofluidics; 2015; 19(2):457-464. PubMed ID: 26379480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete microfluidics with electrochemical detection.
    Lindsay S; Vázquez T; Egatz-Gómez A; Loyprasert S; Garcia AA; Wang J
    Analyst; 2007 May; 132(5):412-6. PubMed ID: 17471386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic digital microfluidics - a review.
    Zhang Y; Nguyen NT
    Lab Chip; 2017 Mar; 17(6):994-1008. PubMed ID: 28220916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and stretchable micromagnet arrays for tunable biointerfacing.
    Tseng P; Lin J; Owsley K; Kong J; Kunze A; Murray C; Di Carlo D
    Adv Mater; 2015 Feb; 27(6):1083-9. PubMed ID: 25537971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry.
    Ngernsutivorakul T; Steyer DJ; Valenta AC; Kennedy RT
    Anal Chem; 2018 Sep; 90(18):10943-10950. PubMed ID: 30107117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection.
    Varma VB; Wu RG; Wang ZP; Ramanujan RV
    Lab Chip; 2017 Oct; 17(20):3514-3525. PubMed ID: 28936512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing.
    Gu S; Lu Y; Ding Y; Li L; Song H; Wang J; Wu Q
    Biosens Bioelectron; 2014 May; 55():106-12. PubMed ID: 24368227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital microfluidics.
    Choi K; Ng AH; Fobel R; Wheeler AR
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():413-40. PubMed ID: 22524226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.