BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26025430)

  • 1. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.
    Jin X; Wang F; Gu C; Yang X; Kengara FO; Bian Y; Song Y; Jiang X
    Chemosphere; 2015 Nov; 138():18-24. PubMed ID: 26025430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.
    Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH
    Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EDDS enhanced Shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride.
    Zhou LY; Chen S; Li H; Guo S; Liu YD; Yang J
    Chemosphere; 2018 May; 198():556-564. PubMed ID: 29422245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron.
    Cao F; Li FB; Liu TX; Huang DY; Wu CY; Feng CH; Li XM
    J Agric Food Chem; 2010 Dec; 58(23):12366-72. PubMed ID: 21062044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DDE remediation and degradation.
    Thomas JE; Ou LT; All-Agely A
    Rev Environ Contam Toxicol; 2008; 194():55-69. PubMed ID: 18069646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.
    Zhu W; Shi M; Yu D; Liu C; Huang T; Wu F
    Sci Rep; 2016 Mar; 6():23718. PubMed ID: 27020166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32.
    O'Loughlin EJ
    Environ Sci Technol; 2008 Sep; 42(18):6876-82. PubMed ID: 18853803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
    Tao L; Zhu ZK; Li FB; Wang SL
    Chemosphere; 2017 Nov; 187():43-51. PubMed ID: 28834771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS).
    Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ
    J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of the interaction between iron oxide and electron donor substances on 1,1,1-trichloro- 2, 2-bis (p-chlorophenyl) ethane ( DDT) reductive dechlorination in hydragric acrisols].
    Liu CY; Xu XH; Wang Z; Yao TY
    Huan Jing Ke Xue; 2014 Nov; 35(11):4298-304. PubMed ID: 25639109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confounding impacts of iron reduction on arsenic retention.
    Tufano KJ; Fendorf S
    Environ Sci Technol; 2008 Jul; 42(13):4777-83. PubMed ID: 18678005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.
    Ding K; Xu W
    Environ Sci Technol; 2016 Dec; 50(23):12976-12983. PubMed ID: 27934256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM.
    Bao P; Hu ZY; Wang XJ; Chen J; Ba YX; Hua J; Zhu CY; Zhong M; Wu CY
    Environ Pollut; 2012 Mar; 162():303-10. PubMed ID: 22243878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite.
    Bae S; Lee Y; Kwon MJ; Lee W
    J Hazard Mater; 2014 Jun; 274():24-31. PubMed ID: 24762697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.