These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26025430)

  • 41. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study.
    Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM
    Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
    Suhara H; Adachi A; Kamei I; Maekawa N
    Biodegradation; 2011 Nov; 22(6):1075-86. PubMed ID: 21380735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions.
    Mohatt JL; Hu L; Finneran KT; Strathmann TJ
    Environ Sci Technol; 2011 Jun; 45(11):4793-801. PubMed ID: 21542626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of persistent DDT residues from soils by earthworms: A mechanistic study.
    Xu HJ; Bai J; Li WY; Zhao LX; Li YT
    J Hazard Mater; 2019 Mar; 365():622-631. PubMed ID: 30472447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.
    Huang H; Zhang Y; Chen W; Chen W; Yuen DA; Ding Y; Chen Y; Mao Y; Qi S
    Environ Pollut; 2018 Apr; 235():560-570. PubMed ID: 29329097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI).
    Stewart BD; Neiss J; Fendorf S
    J Environ Qual; 2007; 36(2):363-72. PubMed ID: 17255623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduction of ferric green rust by Shewanella putrefaciens.
    Jorand F; Zegeye A; Landry F; Ruby C
    Lett Appl Microbiol; 2007 Nov; 45(5):515-21. PubMed ID: 17868312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.
    Zegeye A; Mustin C; Jorand F
    Geobiology; 2010 Jun; 8(3):209-22. PubMed ID: 20398066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biological redox cycling of iron in nontronite and its potential application in nitrate removal.
    Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; PentrĂ¡k M; Agrawal A
    Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.
    Veeramani H; Scheinost AC; Monsegue N; Qafoku NP; Kukkadapu R; Newville M; Lanzirotti A; Pruden A; Murayama M; Hochella MF
    Environ Sci Technol; 2013 Mar; 47(5):2361-9. PubMed ID: 23373896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioextraction (reductive dissolution) of iron from low-grade iron ores. Fundamental and applied studies.
    DiChristina TJ
    Ann N Y Acad Sci; 1994 May; 721():440-9. PubMed ID: 8010693
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrologic flow controls on biologic iron(III) reduction in natural sediments.
    Minyard ML; Burgos WD
    Environ Sci Technol; 2007 Feb; 41(4):1218-24. PubMed ID: 17593722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reductive dissolution of Tl(I)-jarosite by Shewanella putrefaciens: providing new insights into Tl biogeochemistry.
    Smeaton CM; Walshe GE; Fryer BJ; Weisener CG
    Environ Sci Technol; 2012 Oct; 46(20):11086-94. PubMed ID: 22992155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China.
    Yu HY; Bao LJ; Liang Y; Zeng EY
    Environ Sci Technol; 2011 Jun; 45(12):5245-52. PubMed ID: 21595473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Abiotic reductive dechlorination of cis-dichloroethylene by Fe species formed during iron- or sulfate-reduction.
    Jeong HY; Anantharaman K; Han YS; Hayes KF
    Environ Sci Technol; 2011 Jun; 45(12):5186-94. PubMed ID: 21595430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study.
    Zhu C; Fang G; Dionysiou DD; Liu C; Gao J; Qin W; Zhou D
    J Hazard Mater; 2016 Oct; 316():232-41. PubMed ID: 27236432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The enzymatic degradation of DDT. 3. Metabolism of DDT].
    Kujawa M; Macholz RM; Plass R; Knoll R; Engst R
    Nahrung; 1985; 29(4):405-10. PubMed ID: 4022107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.