BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26025508)

  • 1. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
    Qiu W; Wang C; Li Y; Zhou J; Yang G; Xiao Y; Feng G; Jin Q; Mu P; Qian M; Zheng H
    Ultrasonics; 2015 Sep; 62():89-96. PubMed ID: 26025508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new shear wave imaging system for ultrasound elastography.
    Qiu W; Wang C; Xiao Y; Qian M; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3847-50. PubMed ID: 26737133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning-mode 2D acoustic radiation force impulse (s2D-ARFI) imaging based on GPU acceleration.
    Wang C; Zeng B; Qiu W; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():230-3. PubMed ID: 25569939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.
    Azar RZ; Dickie K; Pelissier L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2167-77. PubMed ID: 23143567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional shear-wave elastography on conventional ultrasound scanners with time-aligned sequential tracking (TAST) and comb-push ultrasound shear elastography (CUSE).
    Song P; Macdonald M; Behler R; Lanning J; Wang M; Urban M; Manduca A; Zhao H; Callstrom M; Alizad A; Greenleaf J; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):290-302. PubMed ID: 25643079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound elastography: principles and techniques.
    Gennisson JL; Deffieux T; Fink M; Tanter M
    Diagn Interv Imaging; 2013 May; 94(5):487-95. PubMed ID: 23619292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fast full inversion based breast ultrasound elastography technique.
    Karimi H; Fenster A; Samani A
    Phys Med Biol; 2013 Apr; 58(7):2219-33. PubMed ID: 23475227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.
    Almeida TW; Sampaio DR; Bruno AC; Pavan TZ; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2138-45. PubMed ID: 26670853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.
    He Q; Li GY; Lee FF; Zhang Q; Cao Y; Luo J
    Ultrasound Med Biol; 2017 Jul; 43(7):1520-1532. PubMed ID: 28408062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
    Horeh MD; Asif A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):285-296. PubMed ID: 30530321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.
    Miyamoto N; Hirata K; Kanehisa H; Yoshitake Y
    PLoS One; 2015; 10(4):e0124311. PubMed ID: 25853777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.