These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 26025544)
21. Genome- and Transcriptome-Wide Characterization of Fan L; Xu L; Wang Y; Tang M; Liu L Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31888167 [TBL] [Abstract][Full Text] [Related]
22. Genome-wide sRNA and mRNA transcriptomic profiling insights into dynamic regulation of taproot thickening in radish (Raphanus sativus L.). Xie Y; Ying J; Xu L; Wang Y; Dong J; Chen Y; Tang M; Li C; M'mbone Muleke E; Liu L BMC Plant Biol; 2020 Aug; 20(1):373. PubMed ID: 32770962 [TBL] [Abstract][Full Text] [Related]
23. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926 [TBL] [Abstract][Full Text] [Related]
24. Early Response of Radish to Heat Stress by Strand-Specific Transcriptome and miRNA Analysis. Yang Z; Li W; Su X; Ge P; Zhou Y; Hao Y; Shu H; Gao C; Cheng S; Zhu G; Wang Z Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284545 [TBL] [Abstract][Full Text] [Related]
25. Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Kang JN; Won SY; Seo MS; Lee J; Lee SM; Kwon SJ; Kim JS Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32785002 [TBL] [Abstract][Full Text] [Related]
26. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Xie Y; Zhang W; Wang Y; Xu L; Zhu X; Muleke EM; Liu L Funct Integr Genomics; 2016 Sep; 16(5):529-43. PubMed ID: 27465294 [TBL] [Abstract][Full Text] [Related]
27. Transcriptomic Analysis Identifies Differentially Expressed Genes (DEGs) Associated with Bolting and Flowering in Radish (Raphanus sativus L.). Nie S; Li C; Wang Y; Xu L; Muleke EM; Tang M; Sun X; Liu L Front Plant Sci; 2016; 7():682. PubMed ID: 27252709 [TBL] [Abstract][Full Text] [Related]
28. Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Nie S; Xu L; Wang Y; Huang D; Muleke EM; Sun X; Wang R; Xie Y; Gong Y; Liu L Sci Rep; 2015 Sep; 5():14034. PubMed ID: 26369897 [TBL] [Abstract][Full Text] [Related]
29. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. Yu R; Li D; Du X; Xia S; Liu C; Shi G BMC Genomics; 2017 Aug; 18(1):587. PubMed ID: 28789614 [TBL] [Abstract][Full Text] [Related]
30. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.). Yu R; Wang Y; Xu L; Zhu X; Zhang W; Wang R; Gong Y; Limera C; Liu L BMC Plant Biol; 2015 Feb; 15():30. PubMed ID: 25644462 [TBL] [Abstract][Full Text] [Related]
31. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots. Wang Y; Xu L; Shen H; Wang J; Liu W; Zhu X; Wang R; Sun X; Liu L Sci Rep; 2015 Dec; 5():18296. PubMed ID: 26673153 [TBL] [Abstract][Full Text] [Related]
32. Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing. Xu L; Wang Y; Xu Y; Wang L; Zhai L; Zhu X; Gong Y; Ye S; Liu L Plant Sci; 2013 Mar; 201-202():108-14. PubMed ID: 23352408 [TBL] [Abstract][Full Text] [Related]
33. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
34. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Su T; Fu L; Kuang L; Chen D; Zhang G; Shen Q; Wu D J Hazard Mater; 2022 Feb; 423(Pt A):127140. PubMed ID: 34523471 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome analysis reveals how cadmium promotes root development and accumulates in Apocynum venetum, a promising plant for greening cadmium-contaminated soil. Jing C; Wang M; Lu X; Prince M; Zhang M; Li Y; Zhang C; Meng C; Zhang L; Zheng Y; Xu Z Ecotoxicol Environ Saf; 2024 Jan; 270():115872. PubMed ID: 38171098 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome Profiling of Taproot Reveals Complex Regulatory Networks during Taproot Thickening in Radish (Raphanus sativus L.). Yu R; Wang J; Xu L; Wang Y; Wang R; Zhu X; Sun X; Luo X; Xie Y; Everlyne M; Liu L Front Plant Sci; 2016; 7():1210. PubMed ID: 27597853 [TBL] [Abstract][Full Text] [Related]
37. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
38. RsPDR8, a member of ABCG subfamily, plays a positive role in regulating cadmium efflux and tolerance in radish (Raphanus sativus L.). Zhang X; Ma Y; Lai D; He M; Zhang X; Zhang W; Ji M; Zhu Y; Wang Y; Liu L; Xu L Plant Physiol Biochem; 2023 Dec; 205():108149. PubMed ID: 37939545 [TBL] [Abstract][Full Text] [Related]
39. Genetic linkage map construction and QTL mapping of cadmium accumulation in radish (Raphanus sativus L.). Xu L; Wang L; Gong Y; Dai W; Wang Y; Zhu X; Wen T; Liu L Theor Appl Genet; 2012 Aug; 125(4):659-70. PubMed ID: 22491896 [TBL] [Abstract][Full Text] [Related]
40. Comparative transcriptome analysis revealed key factors for differential cadmium transport and retention in roots of two contrasting peanut cultivars. Yu R; Ma Y; Li Y; Li X; Liu C; Du X; Shi G BMC Genomics; 2018 Dec; 19(1):938. PubMed ID: 30558537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]