These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26026323)

  • 1. Model reduction for networks of coupled oscillators.
    Gottwald GA
    Chaos; 2015 May; 25(5):053111. PubMed ID: 26026323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximate solution for frequency synchronization in a finite-size Kuramoto model.
    Wang C; Rubido N; Grebogi C; Baptista MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062808. PubMed ID: 26764745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of desynchronization in the finite-dimensional Kuramoto model.
    Maistrenko Y; Popovych O; Burylko O; Tass PA
    Phys Rev Lett; 2004 Aug; 93(8):084102. PubMed ID: 15447191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal global synchronization of partially forced Kuramoto oscillators.
    Climaco JS; Saa A
    Chaos; 2019 Jul; 29(7):073115. PubMed ID: 31370401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos in networks of coupled oscillators with multimodal natural frequency distributions.
    Smith LD; Gottwald GA
    Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximate solution to the stochastic Kuramoto model.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052111. PubMed ID: 24329218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of network coupled phase oscillators: an ensemble approach.
    Barlev G; Antonsen TM; Ott E
    Chaos; 2011 Jun; 21(2):025103. PubMed ID: 21721781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks.
    Smith LD; Gottwald GA
    Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks.
    Yoon S; Sorbaro Sindaci M; Goltsev AV; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032814. PubMed ID: 25871164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.
    Brede M; Kalloniatis AC
    Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dimensional dynamics of the Kuramoto model with rational frequency distributions.
    Skardal PS
    Phys Rev E; 2018 Aug; 98(2-1):022207. PubMed ID: 30253541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization in large directed networks of coupled phase oscillators.
    Restrepo JG; Ott E; Hunt BR
    Chaos; 2006 Mar; 16(1):015107. PubMed ID: 16599773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
    English LQ; Zeng Z; Mertens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit.
    Smith LD; Gottwald GA
    Chaos; 2020 Sep; 30(9):093107. PubMed ID: 33003913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explosive synchronization coexists with classical synchronization in the Kuramoto model.
    Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S
    Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.