BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26026435)

  • 1. Adaptive deployment of model reductions for tau-leaping simulation.
    Wu S; Fu J; Petzold LR
    J Chem Phys; 2015 May; 142(20):204108. PubMed ID: 26026435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic identification of model reductions for discrete stochastic simulation.
    Wu S; Fu J; Li H; Petzold L
    J Chem Phys; 2012 Jul; 137(3):034106. PubMed ID: 22830682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Michaelis-Menten speeds up tau-leaping under a wide range of conditions.
    Wu S; Fu J; Cao Y; Petzold L
    J Chem Phys; 2011 Apr; 134(13):134112. PubMed ID: 21476748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm.
    Sehl M; Alekseyenko AV; Lange KL
    J Comput Biol; 2009 Sep; 16(9):1195-208. PubMed ID: 19772431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive explicit-implicit tau-leaping method with automatic tau selection.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2007 Jun; 126(22):224101. PubMed ID: 17581038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffness detection and reduction in discrete stochastic simulation of biochemical systems.
    Pu Y; Watson LT; Cao Y
    J Chem Phys; 2011 Feb; 134(5):054105. PubMed ID: 21303090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems.
    Nobile MS; Cazzaniga P; Besozzi D; Pescini D; Mauri G
    PLoS One; 2014; 9(3):e91963. PubMed ID: 24663957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multinomial tau-leaping method for stochastic kinetic simulations.
    Pettigrew MF; Resat H
    J Chem Phys; 2007 Feb; 126(8):084101. PubMed ID: 17343434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A weak second order tau-leaping method for chemical kinetic systems.
    Hu Y; Li T; Min B
    J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly accurate tau-leaping methods with random corrections.
    Hu Y; Li T
    J Chem Phys; 2009 Mar; 130(12):124109. PubMed ID: 19334810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging [Formula: see text]-Leaping and R-Leaping.
    Lipková J; Arampatzis G; Chatelain P; Menze B; Koumoutsakos P
    Bull Math Biol; 2019 Aug; 81(8):3074-3096. PubMed ID: 29992453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient step size selection for the tau-leaping simulation method.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm.
    Iyengar KA; Harris LA; Clancy P
    J Chem Phys; 2010 Mar; 132(9):094101. PubMed ID: 20210383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "partitioned leaping" approach for multiscale modeling of chemical reaction dynamics.
    Harris LA; Clancy P
    J Chem Phys; 2006 Oct; 125(14):144107. PubMed ID: 17042579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asynchronous τ-leaping.
    Jȩdrzejewski-Szmek Z; Blackwell KT
    J Chem Phys; 2016 Mar; 144(12):125104. PubMed ID: 27036481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating the Gillespie τ-Leaping Method using graphics processing units.
    Komarov I; D'Souza RM; Tapia JJ
    PLoS One; 2012; 7(6):e37370. PubMed ID: 22715366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the adiabatic limit in systems with fast environments: A τ-leaping algorithm.
    Berríos-Caro E; Galla T
    Phys Rev E; 2021 Jul; 104(1-1):014122. PubMed ID: 34412210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
    Beentjes CHL; Baker RE
    Bull Math Biol; 2019 Aug; 81(8):2931-2959. PubMed ID: 29802519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variance Reduction with Array-RQMC for Tau-Leaping Simulation of Stochastic Biological and Chemical Reaction Networks.
    Puchhammer F; Ben Abdellah A; L'Ecuyer P
    Bull Math Biol; 2021 Jul; 83(8):91. PubMed ID: 34236503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying stochastic effects in biochemical reaction networks using partitioned leaping.
    Harris LA; Piccirilli AM; Majusiak ER; Clancy P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051906. PubMed ID: 19518479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.