These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26026437)

  • 1. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions.
    Hayami M; Seino J; Nakai H
    J Chem Phys; 2015 May; 142(20):204110. PubMed ID: 26026437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of accompanying coordinate expansion and recurrence relation method for general-contraction basis sets.
    Hayami M; Seino J; Nakai H
    J Comput Chem; 2014 Jul; 35(20):1517-27. PubMed ID: 24889356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula.
    Kobayashi M; Nakai H
    J Chem Phys; 2004 Sep; 121(9):4050-8. PubMed ID: 15332950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.
    Irons TJP; Zemen J; Teale AM
    J Chem Theory Comput; 2017 Aug; 13(8):3636-3649. PubMed ID: 28692291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives.
    Toyoda M; Ozaki T
    J Chem Phys; 2009 Mar; 130(12):124114. PubMed ID: 19334815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals.
    Lesiuk M; Moszynski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063319. PubMed ID: 25615233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation.
    Zhang J
    J Chem Theory Comput; 2018 Feb; 14(2):572-587. PubMed ID: 29241013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. I. Coulomb and hybrid integrals.
    Lesiuk M; Moszynski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063318. PubMed ID: 25615232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular integrals over the gauge-including atomic orbitals. II. The Breit-Pauli interaction.
    Ishida K
    J Comput Chem; 2003 Nov; 24(15):1874-90. PubMed ID: 14515370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General recurrence-relation generation scheme for molecular integral evaluation.
    Gao B
    J Comput Chem; 2020 Dec; 41(32):2722-2739. PubMed ID: 32974966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions.
    Sandberg JA; Rinkevicius Z
    J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Path Search for Recurrence Relation in Cartesian Gaussian Integrals.
    Liu F; Furlani T; Kong J
    J Phys Chem A; 2016 Dec; 120(51):10264-10272. PubMed ID: 27996260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.
    Ishida K
    J Comput Chem; 2002 Feb; 23(3):378-93. PubMed ID: 11908501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbitrary Angular Momentum Electron Repulsion Integrals with Graphical Processing Units: Application to the Resolution of Identity Hartree-Fock Method.
    Kalinowski J; Wennmohs F; Neese F
    J Chem Theory Comput; 2017 Jul; 13(7):3160-3170. PubMed ID: 28605592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians.
    Reine S; Tellgren E; Helgaker T
    Phys Chem Chem Phys; 2007 Sep; 9(34):4771-9. PubMed ID: 17712455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.
    Shiozaki T
    J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: basis function fitting and integral screening.
    Shang H; Li Z; Yang J
    J Chem Phys; 2011 Jul; 135(3):034110. PubMed ID: 21786990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions.
    Komornicki A; King HF
    J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized basis orbitals: minimization of 2-electron integrals array and orthonormality of basis set.
    Anikin NA; Bugaenko VL; Frash MV; Gorb L; Leszczynski J
    J Comput Chem; 2003 Jul; 24(9):1132-41. PubMed ID: 12759912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-center and 4-center 2-particle Gaussian AO integrals on modern accelerated processors.
    Asadchev A; Valeev EF
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38934632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.