BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26026508)

  • 1. An electrically tunable plenoptic camera using a liquid crystal microlens array.
    Lei Y; Tong Q; Zhang X; Sang H; Ji A; Xie C
    Rev Sci Instrum; 2015 May; 86(5):053101. PubMed ID: 26026508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth-of-Field-Extended Plenoptic Camera Based on Tunable Multi-Focus Liquid-Crystal Microlens Array.
    Chen M; He W; Wei D; Hu C; Shi J; Zhang X; Wang H; Xie C
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional measurement with an electrically tunable focused plenoptic camera.
    Lei Y; Tong Q; Xin Z; Wei D; Zhang X; Liao J; Wang H; Xie C
    Rev Sci Instrum; 2017 Mar; 88(3):033111. PubMed ID: 28372436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.
    Xin Z; Wei D; Xie X; Chen M; Zhang X; Liao J; Wang H; Xie C
    Opt Express; 2018 Feb; 26(4):4035-4049. PubMed ID: 29475259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-In-Focus Polarimetric Imaging Based on an Integrated Plenoptic Camera with a Key Electrically Tunable LC Device.
    Chen M; Li Z; Ye M; Liu T; Hu C; Shi J; Liu K; Wang Z; Zhang X
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically addressed focal stack plenoptic camera based on a liquid-crystal microlens array for all-in-focus imaging.
    Chen M; Ye M; Wang Z; Hu C; Liu T; Liu K; Shi J; Zhang X
    Opt Express; 2022 Sep; 30(19):34938-34955. PubMed ID: 36242498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrayed dual-mode integrated liquid crystal microlens driven jointly by both independent signal voltages.
    Wang Z; Chen M; Hu C; Liu K; Li Z; Ye M; Chen Z; Yuan X; Wang H; Xie C; Zhang X
    Opt Express; 2021 Nov; 29(24):40617-40632. PubMed ID: 34809397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectification of Images Distorted by Microlens Array Errors in Plenoptic Cameras.
    Li S; Zhu Y; Zhang C; Yuan Y; Tan H
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29937502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of electrically controlled arc-electrode liquid-crystal microlens array for wavefront measurement and adjustment.
    Chen M; Dai W; Shao Q; Wang H; Liu Z; Niu L; Zhang X; Wang H; Xie C
    Appl Opt; 2019 Aug; 58(24):6611-6617. PubMed ID: 31503592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underwater plenoptic cameras optimized for water refraction.
    Jiang G; Jin X; Deng R; Sun K; Yang J; Lv W
    Opt Express; 2023 Jun; 31(13):21464-21481. PubMed ID: 37381245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.
    Wu C; Ko J; Davis CC
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):964-78. PubMed ID: 26366923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using focused plenoptic cameras for rich image capture.
    Georgiev T; Lumsdaine A; Chunev G
    IEEE Comput Graph Appl; 2011; 31(1):62-73. PubMed ID: 24807971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method.
    Li TJ; Li S; Yuan Y; Liu YD; Xu CL; Shuai Y; Tan HP
    Opt Express; 2017 Apr; 25(7):8274-8287. PubMed ID: 28380942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.
    Tong Q; Lei Y; Xin Z; Zhang X; Sang H; Xie C
    Opt Express; 2016 Feb; 24(3):1903-23. PubMed ID: 26906768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth of field extension and objective space depth measurement based on wavefront imaging.
    Tong Q; Chen M; Xin Z; Wei D; Zhang X; Liao J; Wang H; Xie C
    Opt Express; 2018 Jul; 26(14):18368-18385. PubMed ID: 30114018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
    Li Y; Sjostrom M; Olsson R; Jennehag U
    IEEE Trans Image Process; 2016 Jan; 25(1):80-91. PubMed ID: 26561433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light field geometry of a Standard Plenoptic Camera.
    Hahne C; Aggoun A; Haxha S; Velisavljevic V; Fernández JC
    Opt Express; 2014 Nov; 22(22):26659-73. PubMed ID: 25401816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical-aberrations-corrected light field re-projection for high-quality plenoptic imaging.
    Chen Y; Jin X; Xiong B
    Opt Express; 2020 Feb; 28(3):3057-3072. PubMed ID: 32121981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point spread function for the wide-field-of-view plenoptic cameras.
    Jin X; Li K; Li C; Sun X
    Opt Express; 2021 Jul; 29(15):23764-23776. PubMed ID: 34614635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.