These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26026565)

  • 1. Note: Measuring capacitance and inductance of a helical resonator and improving its quality factor by mutual inductance alteration.
    Panja S; De S; Yadav S; Sen Gupta A
    Rev Sci Instrum; 2015 May; 86(5):056104. PubMed ID: 26026565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified model of helical resonator with predictable loaded resonant frequency and Q-factor.
    Deng K; Sun YL; Yuan WH; Xu ZT; Zhang J; Lu ZH; Luo J
    Rev Sci Instrum; 2014 Oct; 85(10):104706. PubMed ID: 25362433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive cooling circuits for charged particle traps using crystal resonators.
    Kaltenbacher T; Caspers F; Doser M; Kellerbauer A; Pribyl W
    Rev Sci Instrum; 2011 Nov; 82(11):114702. PubMed ID: 22128997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Measurement Method for High Voltages Applied to an Ion Trap Generated by an RF Resonator.
    Park Y; Jung C; Seong M; Lee M; Cho DD; Kim T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active impedance matching of a cryogenic radio frequency resonator for ion traps.
    Schubert M; Kilzer L; Dubielzig T; Schilling M; Ospelkaus C; Hampel B
    Rev Sci Instrum; 2022 Sep; 93(9):093201. PubMed ID: 36182479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a prototype radio-frequency system for a radio-frequency quadrupole cooler buncher in the rare isotope science project.
    Heo S; Boussaid R; Shin T; Park YH; Son HJ; Moon JY; Kim ES; Bahng J
    Rev Sci Instrum; 2020 Jan; 91(1):013324. PubMed ID: 32012613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutual Inductance in the Bird-Cage Resonator.
    Tropp J
    J Magn Reson; 1997 May; 126(1):9-17. PubMed ID: 9252272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility.
    Reza A; Banerjee K; Das P; Ray K; Bandyopadhyay S; Dam B
    Rev Sci Instrum; 2017 Mar; 88(3):034705. PubMed ID: 28372439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting accelerometer using niobium-on-sapphire rf resonator.
    Blair DG
    Rev Sci Instrum; 1979 Mar; 50(3):286. PubMed ID: 18699493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.
    Sam S; Lim S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):657-60. PubMed ID: 23549526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy.
    Mett RR; Sidabras JW; Hyde JS
    Appl Magn Reson; 2009; 35(2):285-318. PubMed ID: 19498954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact radio-frequency resonator for cryogenic ion traps.
    Gandolfi D; Niedermayr M; Kumph M; Brownnutt M; Blatt R
    Rev Sci Instrum; 2012 Aug; 83(8):084705. PubMed ID: 22938322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method to incorporate the effects of an RF shield into RF resonator analysis for MRI applications.
    Jin J; Magin RL; Shen G; Perkins T
    IEEE Trans Biomed Eng; 1995 Aug; 42(8):840-3. PubMed ID: 7642198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of quantum capacitance in the Cooper-pair transistor.
    Duty T; Johansson G; Bladh K; Gunnarsson D; Wilson C; Delsing P
    Phys Rev Lett; 2005 Nov; 95(20):206807. PubMed ID: 16384086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order harmonic transmission-line RF coil design for MR applications.
    Zhang X; Zhu XH; Chen W
    Magn Reson Med; 2005 May; 53(5):1234-9. PubMed ID: 15844152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of quartz resonator Q and other figures of merit by an energy sink method.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1386-98. PubMed ID: 17718328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-Domain Multiplexing Readout with a Self-Trigger System for Pulse Signals from Kinetic Inductance Detectors.
    Yamada Y; Ishino H; Kibayashi A; Kida Y; Hidehira N; Komatsu K; Hazumi M; Sato N; Sakai K; Yamamori H; Hirayama F; Kohjiro S
    J Low Temp Phys; 2018; 193(3):518-524. PubMed ID: 30839748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.