These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 26026612)
1. DECODE: an integrated differential co-expression and differential expression analysis of gene expression data. Lui TW; Tsui NB; Chan LW; Wong CS; Siu PM; Yung BY BMC Bioinformatics; 2015 May; 16():182. PubMed ID: 26026612 [TBL] [Abstract][Full Text] [Related]
2. Screening for the optimal gene and functional gene sets related to breast cancer using differential co-expression and differential expression analysis. Wang L; Ma H; Zhu L; Ma L; Cao L; Wei H; Xu J Cancer Biomark; 2016; 17(4):463-471. PubMed ID: 27802197 [TBL] [Abstract][Full Text] [Related]
3. Combining differential expression and differential coexpression analysis identifies optimal gene and gene set in cervical cancer. Fang SQ; Gao M; Xiong SL; Chen HY; Hu SS; Cai HB J Cancer Res Ther; 2018 Jan; 14(1):201-207. PubMed ID: 29516986 [TBL] [Abstract][Full Text] [Related]
4. BFDCA: A Comprehensive Tool of Using Bayes Factor for Differential Co-Expression Analysis. Wang D; Wang J; Jiang Y; Liang Y; Xu D J Mol Biol; 2017 Feb; 429(3):446-453. PubMed ID: 27984044 [TBL] [Abstract][Full Text] [Related]
5. Differential correlation for sequencing data. Siska C; Kechris K BMC Res Notes; 2017 Jan; 10(1):54. PubMed ID: 28103954 [TBL] [Abstract][Full Text] [Related]
6. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm. Dong LY; Zhou WZ; Ni JW; Xiang W; Hu WH; Yu C; Li HY Oncol Rep; 2017 Feb; 37(2):1066-1074. PubMed ID: 28035405 [TBL] [Abstract][Full Text] [Related]
7. EntropyExplorer: an R package for computing and comparing differential Shannon entropy, differential coefficient of variation and differential expression. Wang K; Phillips CA; Saxton AM; Langston MA BMC Res Notes; 2015 Dec; 8():832. PubMed ID: 26714840 [TBL] [Abstract][Full Text] [Related]
8. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency. Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273 [TBL] [Abstract][Full Text] [Related]
9. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Ma S; Jiang T; Jiang R Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838 [TBL] [Abstract][Full Text] [Related]
10. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. Gysi DM; Voigt A; Fragoso TM; Almaas E; Nowick K BMC Bioinformatics; 2018 Oct; 19(1):392. PubMed ID: 30355288 [TBL] [Abstract][Full Text] [Related]
11. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server. Han H; Lehner B; Lee I Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989 [TBL] [Abstract][Full Text] [Related]
12. Identifying differentially expressed genes in cancer patients using a non-parameter Ising model. Li X; Feltus FA; Sun X; Wang JZ; Luo F Proteomics; 2011 Oct; 11(19):3845-52. PubMed ID: 21761563 [TBL] [Abstract][Full Text] [Related]
13. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related]
14. PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Watson-Haigh NS; Kadarmideen HN; Reverter A Bioinformatics; 2010 Feb; 26(3):411-3. PubMed ID: 20007253 [TBL] [Abstract][Full Text] [Related]
15. SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks. Zhang R; Ren Z; Chen W PLoS Comput Biol; 2018 Aug; 14(8):e1006369. PubMed ID: 30102702 [TBL] [Abstract][Full Text] [Related]
17. mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics. Sakellariou A; Spyrou G BMC Bioinformatics; 2015 Sep; 16(1):291. PubMed ID: 26374744 [TBL] [Abstract][Full Text] [Related]
18. Network topology measures for identifying disease-gene association in breast cancer. Ramadan E; Alinsaif S; Hassan MR BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):274. PubMed ID: 27454166 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Li Y; Sahni N; Yi S Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983 [TBL] [Abstract][Full Text] [Related]
20. Analysis of cis-Regulatory Elements in Gene Co-expression Networks in Cancer. Triska M; Ivliev A; Nikolsky Y; Tatarinova TV Methods Mol Biol; 2017; 1613():291-310. PubMed ID: 28849565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]