These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26026623)
21. The Vlisidou I; Hapeshi A; Healey JR; Smart K; Yang G; Waterfield NR Elife; 2019 Sep; 8():. PubMed ID: 31526474 [No Abstract] [Full Text] [Related]
22. Toxins and secretion systems of Photorhabdus luminescens. Rodou A; Ankrah DO; Stathopoulos C Toxins (Basel); 2010 Jun; 2(6):1250-64. PubMed ID: 22069636 [TBL] [Abstract][Full Text] [Related]
23. The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of Photorhabdus luminescens ADP-ribosyltransferases. Lang AE; Ernst K; Lee H; Papatheodorou P; Schwan C; Barth H; Aktories K Cell Microbiol; 2014 Apr; 16(4):490-503. PubMed ID: 24138221 [TBL] [Abstract][Full Text] [Related]
24. XaxAB-like binary toxin from Photorhabdus luminescens exhibits both insecticidal activity and cytotoxicity. Zhang X; Hu X; Li Y; Ding X; Yang Q; Sun Y; Yu Z; Xia L; Hu S FEMS Microbiol Lett; 2014 Jan; 350(1):48-56. PubMed ID: 24188660 [TBL] [Abstract][Full Text] [Related]
25. The HcaR regulatory protein of Photorhabdus luminescens affects the production of proteins involved in oxidative stress and toxemia. Chalabaev S; Turlin E; Charles JF; Namane A; Pagès S; Givaudan A; Brito-Fravallo E; Danchin A; Biville F Proteomics; 2007 Dec; 7(24):4499-510. PubMed ID: 18072208 [TBL] [Abstract][Full Text] [Related]
28. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. Jančaříková G; Houser J; Dobeš P; Demo G; Hyršl P; Wimmerová M PLoS Pathog; 2017 Aug; 13(8):e1006564. PubMed ID: 28806750 [TBL] [Abstract][Full Text] [Related]
29. A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Santhoshkumar K; Mathur C; Mandal A; Dutta TK Microbiol Res; 2021 Jan; 242():126642. PubMed ID: 33191102 [TBL] [Abstract][Full Text] [Related]
30. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Gulcu B; Hazir S; Kaya HK J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508 [TBL] [Abstract][Full Text] [Related]
31. [Metabolites produced by bacteria of Xenorhabdus and Photorhabdus]. Wang L; Yang X; Jian H; Yang H; Huang D Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):753-6. PubMed ID: 12552836 [No Abstract] [Full Text] [Related]
32. Clostridial Rho-inhibiting protein toxins. Aktories K; Just I Curr Top Microbiol Immunol; 2005; 291():113-45. PubMed ID: 15981462 [TBL] [Abstract][Full Text] [Related]
33. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. Mouammine A; Lanois A; Pagès S; Lafay B; Molle V; Canova M; Girard PA; Duvic B; Givaudan A; Gaudriault S PLoS One; 2014; 9(10):e110060. PubMed ID: 25333642 [TBL] [Abstract][Full Text] [Related]
34. Methods to Study Rho GTPases Using Bacterial Toxins. Schmidt G Methods Mol Biol; 2018; 1821():141-154. PubMed ID: 30062410 [TBL] [Abstract][Full Text] [Related]
35. Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Waterfield N; Hares M; Yang G; Dowling A; ffrench-Constant R Cell Microbiol; 2005 Mar; 7(3):373-82. PubMed ID: 15679840 [TBL] [Abstract][Full Text] [Related]
36. Bacterial protein toxins targeting rho GTPases. Lerm M; Schmidt G; Aktories K FEMS Microbiol Lett; 2000 Jul; 188(1):1-6. PubMed ID: 10867225 [TBL] [Abstract][Full Text] [Related]
37. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. ffrench-Constant RH; Dowling A; Waterfield NR Toxicon; 2007 Mar; 49(4):436-51. PubMed ID: 17207509 [TBL] [Abstract][Full Text] [Related]
38. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
39. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Daborn PJ; Waterfield N; Silva CP; Au CP; Sharma S; Ffrench-Constant RH Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10742-7. PubMed ID: 12136122 [TBL] [Abstract][Full Text] [Related]