These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 26026682)
1. Exploration of binding of bisphenol A and its analogues with calf thymus DNA by optical spectroscopic and molecular docking methods. Wang YQ; Zhang HM J Photochem Photobiol B; 2015 Aug; 149():9-20. PubMed ID: 26026682 [TBL] [Abstract][Full Text] [Related]
2. Binding of a new bisphenol analogue, bisphenol S to bovine serum albumin and calf thymus DNA. Wang YQ; Zhang HM; Cao J; Tang BP J Photochem Photobiol B; 2014 Sep; 138():182-90. PubMed ID: 24972352 [TBL] [Abstract][Full Text] [Related]
3. Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies. Usman A; Ahmad M Chemosphere; 2017 Aug; 181():536-543. PubMed ID: 28463728 [TBL] [Abstract][Full Text] [Related]
4. Quest for the binding mode of tetrabromobisphenol A with Calf thymus DNA. Wang YQ; Zhang HM; Cao J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():109-13. PubMed ID: 24830628 [TBL] [Abstract][Full Text] [Related]
5. Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study. Sarwar T; Ishqi HM; Rehman SU; Husain MA; Rahman Y; Tabish M Int J Biol Macromol; 2017 May; 98():319-328. PubMed ID: 28167108 [TBL] [Abstract][Full Text] [Related]
6. Interaction of a bioactive pyrazole derivative with calf thymus DNA: Deciphering the mode of binding by multi-spectroscopic and molecular docking investigations. Kundu P; Chattopadhyay N J Photochem Photobiol B; 2017 Aug; 173():485-492. PubMed ID: 28668517 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of the interactions between bisphenol-A and its endocrine disrupting analogues with bovine serum albumin using multi-spectroscopic and molecular docking studies. Ikhlas S; Usman A; Ahmad M J Biomol Struct Dyn; 2019 Apr; 37(6):1427-1437. PubMed ID: 29620490 [TBL] [Abstract][Full Text] [Related]
8. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA. Shi JH; Zhou KL; Lou YY; Pan DQ Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():14-22. PubMed ID: 29212044 [TBL] [Abstract][Full Text] [Related]
9. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking. Shi JH; Liu TT; Jiang M; Chen J; Wang Q J Photochem Photobiol B; 2015 Jun; 147():47-55. PubMed ID: 25839749 [TBL] [Abstract][Full Text] [Related]
10. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Shi JH; Chen J; Wang J; Zhu YY Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():443-50. PubMed ID: 25311519 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of the interactions between bisphenol analogues and serum albumins by electrospray mass spectrometry and fluorescence spectroscopy. Luo H; Li C; Fang H; Wang X Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():162-7. PubMed ID: 27539432 [TBL] [Abstract][Full Text] [Related]
12. Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA. Chai J; Wang J; Xu Q; Hao F; Liu R Mol Biosyst; 2012 Jul; 8(7):1902-7. PubMed ID: 22610465 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in silico assessment of the structure-dependent binding of bisphenol analogues to glucocorticoid receptor. Zhang J; Zhang T; Guan T; Yu H; Li T Anal Bioanal Chem; 2017 Mar; 409(8):2239-2246. PubMed ID: 28078411 [TBL] [Abstract][Full Text] [Related]
14. Groove binding mediated structural modulation and DNA cleavage by quinoline appended chalcone derivative. Kumar H; Devaraji V; Prasath R; Jadhao M; Joshi R; Bhavana P; Ghosh SK Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():605-15. PubMed ID: 26163783 [TBL] [Abstract][Full Text] [Related]
15. Studies of DNA-binding properties of lafutidine as adjuvant anticancer agent to calf thymus DNA using multi-spectroscopic approaches, NMR relaxation data, molecular docking and dynamical simulation. Yang H; Tang P; Tang B; Huang Y; He J; Li S; Li H Int J Biol Macromol; 2017 Jun; 99():79-87. PubMed ID: 28235605 [TBL] [Abstract][Full Text] [Related]
16. Combined spectroscopic and molecular docking approach to probing binding interactions between lovastatin and calf thymus DNA. Chen CB; Chen J; Wang J; Zhu YY; Shi JH Luminescence; 2015 Nov; 30(7):1004-10. PubMed ID: 25640921 [TBL] [Abstract][Full Text] [Related]
17. Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. Shahabadi N; Fili SM; Kheirdoosh F J Photochem Photobiol B; 2013 Nov; 128():20-6. PubMed ID: 23994435 [TBL] [Abstract][Full Text] [Related]
18. The interaction mechanism of candidone with calf thymus DNA: A multi-spectroscopic and MD simulation study. Dehkordi MF; Farhadian S; Hashemi-Shahraki F; Rahmani B; Darzi S; Dehghan G Int J Biol Macromol; 2023 Apr; 235():123713. PubMed ID: 36801300 [TBL] [Abstract][Full Text] [Related]
19. Multi-spectroscopic and molecular modelling studies on the interaction of esculetin with calf thymus DNA. Sarwar T; Husain MA; Rehman SU; Ishqi HM; Tabish M Mol Biosyst; 2015 Feb; 11(2):522-31. PubMed ID: 25424306 [TBL] [Abstract][Full Text] [Related]
20. Mutual influence of piceatannol and bisphenol F on their interaction with pepsin: Insights from spectroscopic, isothermal titration calorimetry and molecular modeling studies. Shi Y; Liu M; Yan H; Cai C; Guo Q; Pei W; Zhang R; Wang Z; Han J Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():384-395. PubMed ID: 30170174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]