These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2602669)

  • 1. Resistance measurement in normal and obstructed excised human lungs by means of the interrupter method.
    Fichter J; Wierich W; Hartung W
    Respiration; 1989; 56(1-2):34-42. PubMed ID: 2602669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory pressure transients after flow interruption during bronchial challenge test in children.
    Frey U; Kraemer R
    Eur Respir J; 1997 Jan; 10(1):75-81. PubMed ID: 9032496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of anaesthesia ventilators using a lung model.
    Johnson A; Bengtsson M
    Acta Anaesthesiol Scand; 1990 Apr; 34(3):222-6. PubMed ID: 2343721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume-guarantee ventilation: pressure may decrease during obstructed flow.
    Wheeler KI; Morley CJ; Kamlin CO; Davis PG
    Arch Dis Child Fetal Neonatal Ed; 2009 Mar; 94(2):F84-6. PubMed ID: 18701560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The opening interrupter technique for respiratory resistance measurements in children.
    Oswald-Mammosser M; Charloux A; Enache I; Lonsdorfer-Wolf E
    Respirology; 2010 Oct; 15(7):1104-10. PubMed ID: 20874747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrupter airway and tissue resistance: errors caused by valve properties and respiratory system compliance.
    Kessler V; Mols G; Bernhard H; Haberthür C; Guttmann J
    J Appl Physiol (1985); 1999 Oct; 87(4):1546-54. PubMed ID: 10517790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site of airway obstruction: effects on the acoustic impedance of excised pig lungs.
    Feihl F; Simon N; Jaeggi C; Depeursinge C; Perret C
    J Appl Physiol (1985); 1988 Apr; 64(4):1387-96. PubMed ID: 3378974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chest wall interrupter resistance in anesthetized paralyzed humans.
    D'Angelo E; Prandi E; Tavola M; Calderini E; Milic-Emili J
    J Appl Physiol (1985); 1994 Aug; 77(2):883-7. PubMed ID: 8002543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of interrupter and forced oscillation measurements of respiratory resistance in the dog.
    Bates JH; Daróczy B; Hantos Z
    J Appl Physiol (1985); 1992 Jan; 72(1):46-52. PubMed ID: 1537743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of excised calf lungs: effects of airway obstruction with beads.
    Gustin P; Lekeux P; Lomba F; Clercx C
    Res Vet Sci; 1987 May; 42(3):277-9. PubMed ID: 3616143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collateral resistance at alveolar level in excised dog lungs.
    Sasaki H; Takishima T; Nakamura M
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Jun; 48(6):982-90. PubMed ID: 7380710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer analysis of physical factors affecting the use of the interrupter technique in infants.
    Sly PD; Bates JH
    Pediatr Pulmonol; 1988; 4(4):219-24. PubMed ID: 3393385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A portable device based on the interrupter technique for measuring airway resistance in preschool children.
    Derman O; Yaramis A; Kirbas G
    J Investig Allergol Clin Immunol; 2004; 14(2):121-6. PubMed ID: 15301301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the interrupter technique in healthy, unsedated infants.
    Hall GL; Wildhaber JH; Cernelc M; Frey U
    Eur Respir J; 2001 Dec; 18(6):982-8. PubMed ID: 11829106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue and airway impedance of excised normal, senile, and emphysematous lungs.
    Verbeken EK; Cauberghs M; Mertens I; Lauweryns JM; Van de Woestijne KP
    J Appl Physiol (1985); 1992 Jun; 72(6):2343-53. PubMed ID: 1629090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening interrupter technique in pre-school children with chronic respiratory diseases: a perspective case-control study in the diagnosis of airway hyperesponsiveness.
    Vitaliti G; Leonardi S; La Rosa M
    J Asthma; 2013 Dec; 50(10):1045-8. PubMed ID: 24047407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of interrupter resistance in rabbits exposed to methacholine aerosols.
    Smith PG; Falahat A; Carlo WA
    J Appl Physiol (1985); 1992 Jun; 72(6):2454-7. PubMed ID: 1629102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung and chest wall mechanics in mechanically ventilated COPD patients.
    Guérin C; Coussa ML; Eissa NT; Corbeil C; Chassé M; Braidy J; Matar N; Milic-Emili J
    J Appl Physiol (1985); 1993 Apr; 74(4):1570-80. PubMed ID: 8514671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary function tests in excised dog lungs with small airway obstruction by beads.
    Sugiyama M; Sasaki H; Inoue H; Nakamura M; Sasaki T; Takishima T
    Tohoku J Exp Med; 1984 Jun; 143(2):197-204. PubMed ID: 6474450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods of airway resistance assessment.
    Urbankowski T; Przybyłowski T
    Pneumonol Alergol Pol; 2016; 84(2):134-41. PubMed ID: 27238174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.