BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 26026778)

  • 1. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially constrained random walk approach for accurate estimation of airway wall surfaces.
    Xu Z; Bagci U; Foster B; Mansoor A; Mollura DJ
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):559-66. PubMed ID: 24579185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans.
    Rosell J; Cabras P
    Comput Med Imaging Graph; 2013; 37(7-8):430-7. PubMed ID: 23981684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree.
    Wang C; Smedby O
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):311-8. PubMed ID: 18051073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate airway wall estimation using phase congruency.
    Estépar RS; Washko GG; Silverman EK; Reilly JJ; Kikinis R; Westin CF
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):125-34. PubMed ID: 17354764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated system for three-dimensional bronchial morphology analysis using volumetric multidetector computed tomography of the chest.
    Venkatraman R; Raman R; Raman B; Moss RB; Rubin GD; Mathers LH; Robinson TE
    J Digit Imaging; 2006 Jun; 19(2):132-9. PubMed ID: 16341571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
    Aykac D; Hoffman EA; McLennan G; Reinhardt JM
    IEEE Trans Med Imaging; 2003 Aug; 22(8):940-50. PubMed ID: 12906248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of airways in lungs using projections in 3-D CT angiography images.
    Babin D; Vansteenkiste E; Pizurica A; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3162-5. PubMed ID: 21096807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computerized identification of airway wall in CT examinations using a 3D active surface evolution approach.
    Gu S; Fuhrman C; Meng X; Siegfried JM; Gur D; Leader JK; Sciurba FC; Pu J
    Med Image Anal; 2013 Apr; 17(3):283-96. PubMed ID: 23260997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
    Xu Z; Bagci U; Kubler A; Luna B; Jain S; Bishai WR; Mollura DJ
    Med Phys; 2013 Nov; 40(11):113701. PubMed ID: 24320475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease.
    Petersen J; Nielsen M; Lo P; Nordenmark LH; Pedersen JH; Wille MM; Dirksen A; de Bruijne M
    Med Image Anal; 2014 Apr; 18(3):531-41. PubMed ID: 24603047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance.
    Ukil S; Reinhardt JM
    Acad Radiol; 2005 Dec; 12(12):1502-11. PubMed ID: 16321738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. About objective 3-d analysis of airway geometry in computerized tomography.
    Weinheimer O; Achenbach T; Bletz C; Duber C; Kauczor HU; Heussel CP
    IEEE Trans Med Imaging; 2008 Jan; 27(1):64-74. PubMed ID: 18270063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimized Superpixel Clustering Approach for High-Resolution Chest CT Image Segmentation.
    Pinheiro da Rosa R; Cordeiro d'Ornellas M
    Stud Health Technol Inform; 2015; 216():1045. PubMed ID: 26262344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation.
    Fetita CI; PrĂȘteux F; Beigelman-Aubry C; Grenier P
    IEEE Trans Med Imaging; 2004 Nov; 23(11):1353-64. PubMed ID: 15554124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimization based approach embedded in a fuzzy connectivity algorithm for airway tree segmentation.
    Yousefi Rizi F; Ahmadian A; Fatemizadeh E; Alirezaie J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4011-4. PubMed ID: 19163592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated CT scoring of airway diseases: preliminary results.
    Odry BL; Kiraly AP; Godoy MC; Ko J; Naidich DP; Novak CL; Lerallut JF
    Acad Radiol; 2010 Sep; 17(9):1136-45. PubMed ID: 20576450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of a New Integral-Based Half-Band Method for CT Measurement of Peripheral Airways in COPD With a Conventional Full-Width Half-Maximum Method Using Both Phantom and Clinical CT Images.
    Cho YH; Seo JB; Kim N; Lee HJ; Hwang HJ; Kim EY; Oh SY
    J Comput Assist Tomogr; 2015; 39(3):428-36. PubMed ID: 25700223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.