BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26026840)

  • 1. The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors.
    Li P; Song Y; Yu S; Park HD
    Chemosphere; 2015 Oct; 136():245-51. PubMed ID: 26026840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.
    Li P; Song Y; Yu S
    Water Res; 2014 Oct; 62():241-8. PubMed ID: 24960124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium.
    Tang JW; Wu QY; Hao HW; Chen Y; Wu M
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):115-21. PubMed ID: 15261016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of field-collected Microcystis aeruginosa in pilot-scale by a jet pump cavitation reactor.
    Xu S; Wang J; Chen W; Ji B; Yan H; Zhang Z; Long X
    Ultrason Sonochem; 2022 Feb; 83():105924. PubMed ID: 35091235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation.
    Wu Z; Shen H; Ondruschka B; Zhang Y; Wang W; Bremner DH
    J Hazard Mater; 2012 Oct; 235-236():152-8. PubMed ID: 22883706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms.
    Li Y; Shi X; Zhang Z; Peng Y
    Ultrason Sonochem; 2019 Jul; 55():232-242. PubMed ID: 30712852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic frequency effects on the removal of Microcystis aeruginosa.
    Zhang G; Zhang P; Wang B; Liu H
    Ultrason Sonochem; 2006 Jul; 13(5):446-50. PubMed ID: 16360333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter.
    Kong Y; Peng Y; Zhang Z; Zhang M; Zhou Y; Duan Z
    Ultrason Sonochem; 2019 Sep; 56():447-457. PubMed ID: 31101283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on a novel omnidirectional ultrasonic cavitation removal system for Microcystis aeruginosa.
    Feng HR; Wang JA; Wang L; Jin JM; Wu SW; Zhou CC
    Ultrason Sonochem; 2022 May; 86():106008. PubMed ID: 35468450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Growth inhibition of Microcystis aeruginosa in packed-bed discharge plasma Reactor].
    Wang CH; Li GF; Wu Y; Wang Y
    Huan Jing Ke Xue; 2008 Feb; 29(2):368-74. PubMed ID: 18613507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs.
    Song Y; Zhang LL; Li J; Chen M; Zhang YW
    Sci Total Environ; 2018 Sep; 636():230-239. PubMed ID: 29705435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies.
    Wu X; Joyce EM; Mason TJ
    Water Res; 2012 Jun; 46(9):2851-8. PubMed ID: 22440593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of ultrasound on the physiological characteristics and competitive growth between
    Tan X; Xu YX; Li NG; Duan ZP; Jiang YJ; Zeng QF; Qiang J
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2845-2852. PubMed ID: 36384622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal.
    Zhang G; Zhang P; Fan M
    Ultrason Sonochem; 2009 Mar; 16(3):334-8. PubMed ID: 19083255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.
    Rajasekhar P; Fan L; Nguyen T; Roddick FA
    Water Res; 2012 Apr; 46(5):1473-81. PubMed ID: 22119237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.
    Purcell D; Parsons SA; Jefferson B
    Environ Technol; 2013; 34(17-20):2477-90. PubMed ID: 24527608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H₂O₂) on the degradation of neonicotinoid class of insecticide.
    Raut-Jadhav S; Saharan VK; Pinjari D; Sonawane S; Saini D; Pandit A
    J Hazard Mater; 2013 Oct; 261():139-47. PubMed ID: 23912079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of jet cavitation on the growth of Microcystis aeruginosa.
    Xu Y; Yang J; Wang Y; Liu F; Jia J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2345-58. PubMed ID: 17018417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater.
    Zupanc M; Kosjek T; Petkovšek M; Dular M; Kompare B; Širok B; Stražar M; Heath E
    Ultrason Sonochem; 2014 May; 21(3):1213-21. PubMed ID: 24286658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.
    Čehovin M; Medic A; Scheideler J; Mielcke J; Ried A; Kompare B; Žgajnar Gotvajn A
    Ultrason Sonochem; 2017 Jul; 37():394-404. PubMed ID: 28427649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.