BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26026951)

  • 1. A fluorescent approach for identifying P2X1 ligands.
    Ruepp MD; Brozik JA; de Esch IJ; Farndale RW; Murrell-Lagnado RD; Thompson AJ
    Neuropharmacology; 2015 Nov; 98():13-21. PubMed ID: 26026951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P2X receptor chimeras highlight roles of the amino terminus to partial agonist efficacy, the carboxyl terminus to recovery from desensitization, and independent regulation of channel transitions.
    Allsopp RC; Farmer LK; Fryatt AG; Evans RJ
    J Biol Chem; 2013 Jul; 288(29):21412-21421. PubMed ID: 23740251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop.
    El-Ajouz S; Ray D; Allsopp RC; Evans RJ
    Br J Pharmacol; 2012 Jan; 165(2):390-400. PubMed ID: 21671897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of P2X receptors expressed in rat pulmonary arteries.
    Syed NI; Tengah A; Paul A; Kennedy C
    Eur J Pharmacol; 2010 Dec; 649(1-3):342-8. PubMed ID: 20868665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.
    Farmer LK; Schmid R; Evans RJ
    J Biol Chem; 2015 Jan; 290(3):1559-69. PubMed ID: 25425641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
    Dal Ben D; Buccioni M; Lambertucci C; Marucci G; Thomas A; Volpini R
    Eur J Med Chem; 2015 Jan; 89():561-80. PubMed ID: 25462266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.
    Wright A; Mahaut-Smith M; Symon F; Sylvius N; Ran S; Bafadhel M; Muessel M; Bradding P; Wardlaw A; Vial C
    J Immunol; 2016 Jun; 196(12):4877-84. PubMed ID: 27183585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropharmacology of purinergic receptors in human submucous plexus: Involvement of P2X₁, P2X₂, P2X₃ channels, P2Y and A₃ metabotropic receptors in neurotransmission.
    Liñán-Rico A; Wunderlich JE; Enneking JT; Tso DR; Grants I; Williams KC; Otey A; Michel K; Schemann M; Needleman B; Harzman A; Christofi FL
    Neuropharmacology; 2015 Aug; 95():83-99. PubMed ID: 25724083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of Alexa-647-ATP as a powerful tool to study P2X receptor ligand binding and desensitization.
    Bhargava Y; Nicke A; Rettinger J
    Biochem Biophys Res Commun; 2013 Aug; 438(2):295-300. PubMed ID: 23896604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors.
    Allsopp RC; Lalo U; Evans RJ
    J Biol Chem; 2010 Oct; 285(43):32770-32777. PubMed ID: 20699225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular identification of P2X receptors in vascular smooth muscle cells from rat anterior, posterior, and basilar arteries.
    Harhun MI; Sukhanova K; Gordienko D; Dyskina Y
    Pharmacol Rep; 2015 Dec; 67(6):1055-60. PubMed ID: 26481522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P2X1 and P2X2 receptors in the central nervous system as possible drug targets.
    Hausmann R; Schmalzing G
    CNS Neurol Disord Drug Targets; 2012 Sep; 11(6):675-86. PubMed ID: 22963438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP-gated P2X
    El Mdawar MB; Maître B; Magnenat S; Gachet C; Hechler B; de la Salle H
    Sci Rep; 2019 Mar; 9(1):5159. PubMed ID: 30914724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, potentiates ATP-gated P2X₁ receptor channel currents.
    Choi SH; Kim HJ; Kim BR; Shin TJ; Hwang SH; Lee BH; Lee SM; Rhim H; Nah SY
    Mol Cells; 2013 Feb; 35(2):142-50. PubMed ID: 23456336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists.
    Tian M; Abdelrahman A; Baqi Y; Fuentes E; Azazna D; Spanier C; Densborn S; Hinz S; Schmid R; Müller CE
    J Med Chem; 2020 Jun; 63(11):6164-6178. PubMed ID: 32345019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tightening of the ATP-binding sites induces the opening of P2X receptor channels.
    Jiang R; Taly A; Lemoine D; Martz A; Cunrath O; Grutter T
    EMBO J; 2012 May; 31(9):2134-43. PubMed ID: 22473210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels.
    Fryatt AG; Dayl S; Cullis PM; Schmid R; Evans RJ
    Sci Rep; 2016 Sep; 6():32918. PubMed ID: 27616669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism.
    Al-Aqtash R; Collier DM
    Channels (Austin); 2024 Dec; 18(1):2355150. PubMed ID: 38762911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic control of vascular tone in the retina.
    Kur J; Newman EA
    J Physiol; 2014 Feb; 592(3):491-504. PubMed ID: 24277867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of P2X1, P2X4 and P2X7 purinergic receptors in human monocyte-derived macrophages.
    Vargas-Martínez EM; Gómez-Coronado KS; Espinosa-Luna R; Valdez-Morales EE; Barrios-García T; Barajas-Espinosa A; Ochoa-Cortes F; Montaño LM; Barajas-López C; Guerrero-Alba R
    Eur J Pharmacol; 2020 Dec; 888():173460. PubMed ID: 32805257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.