BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26027501)

  • 21. Protective effect of milk peptides: antibacterial and antitumor properties.
    López-Expósito I; Recio I
    Adv Exp Med Biol; 2008; 606():271-93. PubMed ID: 18183934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of milk peptides in determining the functionality of milk proteins: a review.
    Haque ZU
    J Dairy Sci; 1993 Jan; 76(1):311-20. PubMed ID: 8436681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes.
    Tavares T; Contreras Mdel M; Amorim M; Pintado M; Recio I; Malcata FX
    Peptides; 2011 May; 32(5):1013-9. PubMed ID: 21335046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides.
    Power O; Jakeman P; FitzGerald RJ
    Amino Acids; 2013 Mar; 44(3):797-820. PubMed ID: 22968663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular mechanisms of interactions between bioactive peptides and angiotensin-converting enzyme.
    Pan D; Guo H; Zhao B; Cao J
    Bioorg Med Chem Lett; 2011 Jul; 21(13):3898-904. PubMed ID: 21640589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical properties of peptides encrypted in bovine milk proteins.
    Meisel H
    Curr Med Chem; 2005; 12(16):1905-19. PubMed ID: 16101509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological properties of milk ingredients released by fermentation.
    Beermann C; Hartung J
    Food Funct; 2013 Feb; 4(2):185-99. PubMed ID: 23111492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the angiotensin-converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves.
    Estévez N; Fuciños P; Sobrosa AC; Pastrana L; Pérez N; Luisa Rúa M
    Biotechnol Prog; 2012; 28(5):1197-206. PubMed ID: 22736636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and production of multifunctional cationic peptides derived from rice proteins.
    Taniguchi M; Ochiai A
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):634-650. PubMed ID: 28100113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects.
    Schlimme E; Meisel H
    Nahrung; 1995; 39(1):1-20. PubMed ID: 7898574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential role of milk-derived peptides in cardiovascular disease.
    Phelan M; Kerins D
    Food Funct; 2011 Apr; 2(3-4):153-67. PubMed ID: 21779574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailoring the Adsorption of ACE-Inhibiting Peptides by Nitrogen Functionalization of Porous Carbons.
    Huettner C; Hagemann D; Troschke E; Hippauf F; Borchardt L; Oswald S; Henle T; Kaskel S
    Langmuir; 2019 Jul; 35(30):9721-9731. PubMed ID: 31280571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional significance of bioactive peptides derived from soybean.
    Singh BP; Vij S; Hati S
    Peptides; 2014 Apr; 54():171-9. PubMed ID: 24508378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and properties of health-promoting proteins and peptides from bovine colostrum and milk.
    Korhonen HJ
    Cell Mol Biol (Noisy-le-grand); 2013 Nov; 59(1):12-24. PubMed ID: 24200017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense.
    De Gobba C; Tompa G; Otte J
    Food Chem; 2014 Dec; 165():205-15. PubMed ID: 25038668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Milk-Derived Antibacterial Peptides in Modern Food Biotechnology: Their Synthesis, Applications and Future Perspectives.
    Khan MU; Pirzadeh M; Förster CY; Shityakov S; Shariati MA
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30301185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update.
    Nagpal R; Behare P; Rana R; Kumar A; Kumar M; Arora S; Morotta F; Jain S; Yadav H
    Food Funct; 2011 Jan; 2(1):18-27. PubMed ID: 21773582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.
    Gandhi A; Shah NP
    Int J Food Sci Nutr; 2014 Dec; 65(8):937-41. PubMed ID: 25095898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis.
    Marcone S; Belton O; Fitzgerald DJ
    Br J Clin Pharmacol; 2017 Jan; 83(1):152-162. PubMed ID: 27151091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical characterisation and determination of sensory attributes of hydrolysates produced by enzymatic hydrolysis of whey proteins following a novel integrative process.
    Welderufael FT; Gibson T; Methven L; Jauregi P
    Food Chem; 2012 Oct; 134(4):1947-58. PubMed ID: 23442643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.