BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26027565)

  • 1. Intratumoral Pharmacokinetics: Challenges to Nanobiomaterials.
    Al-Abd AM; Al-Abbasi FA; Torchilin VP
    Curr Pharm Des; 2015; 21(22):3208-14. PubMed ID: 26027565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles.
    Ernsting MJ; Murakami M; Roy A; Li SD
    J Control Release; 2013 Dec; 172(3):782-94. PubMed ID: 24075927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetic strategies to improve drug penetration and entrapment within solid tumors.
    Al-Abd AM; Aljehani ZK; Gazzaz RW; Fakhri SH; Jabbad AH; Alahdal AM; Torchilin VP
    J Control Release; 2015 Dec; 219():269-277. PubMed ID: 26342660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review.
    Abdifetah O; Na-Bangchang K
    Int J Nanomedicine; 2019; 14():5659-5677. PubMed ID: 31632004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics.
    Jin SE; Jin HE; Hong SS
    Biomed Res Int; 2014; 2014():814208. PubMed ID: 24672796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in stimuli responsive nanobiomaterials for cancer therapy.
    Sampathkumar K; Arulkumar S; Ramalingam M
    J Biomed Nanotechnol; 2014 Mar; 10(3):367-82. PubMed ID: 24730233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls.
    Nakamura H; Fang J; Maeda H
    Expert Opin Drug Deliv; 2015 Jan; 12(1):53-64. PubMed ID: 25425260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug penetration in solid tumours.
    Minchinton AI; Tannock IF
    Nat Rev Cancer; 2006 Aug; 6(8):583-92. PubMed ID: 16862189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocarriers to solid tumors: considerations on tumor penetration and exposure of tumor cells to therapeutic agents.
    Bhagat M; Halligan S; Sofou S
    Curr Pharm Biotechnol; 2012 Jun; 13(7):1306-16. PubMed ID: 22201591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and biodistribution of suberoylanilide hydroxamic acid loaded poly (DL-lactide-co-glycolide) nanoparticles for targeted drug delivery in cancer.
    Sankar R; Ravikumar V
    Biomed Pharmacother; 2014 Sep; 68(7):865-71. PubMed ID: 25107842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle approaches to combating drug resistance.
    Moon JH; Moxley JW; Zhang P; Cui H
    Future Med Chem; 2015 Aug; 7(12):1503-10. PubMed ID: 26334205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured Systems for the Organelle-specific Delivery of Anticancer Drugs.
    Joanitti GA; Ganassin R; Rodrigues MC; Figueiro Longo JP; Jiang CS; Gu J; Leal Pinto SM; Almeida Dos Santos MF; de Azevedo RB; Muehlmann LA
    Mini Rev Med Chem; 2017; 17(3):224-236. PubMed ID: 27739361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.
    Ruttala HB; Ramasamy T; Madeshwaran T; Hiep TT; Kandasamy U; Oh KT; Choi HG; Yong CS; Kim JO
    Arch Pharm Res; 2018 Feb; 41(2):111-129. PubMed ID: 29214601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?
    Taurin S; Nehoff H; Greish K
    J Control Release; 2012 Dec; 164(3):265-75. PubMed ID: 22800576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening.
    Millard M; Yakavets I; Zorin V; Kulmukhamedova A; Marchal S; Bezdetnaya L
    Int J Nanomedicine; 2017; 12():7993-8007. PubMed ID: 29184400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.
    Popilski H; Stepensky D
    Expert Opin Drug Metab Toxicol; 2015 May; 11(5):767-84. PubMed ID: 25813659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.