BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26027796)

  • 1. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859.
    Heidtmann H; Ruminot I; Becker HM; Deitmer JW
    Eur J Pharmacol; 2015 Sep; 762():344-9. PubMed ID: 26027796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart.
    Ch'en FF; Villafuerte FC; Swietach P; Cobden PM; Vaughan-Jones RD
    Br J Pharmacol; 2008 Mar; 153(5):972-82. PubMed ID: 18204485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes.
    Becker HM; Bröer S; Deitmer JW
    Biophys J; 2004 Jan; 86(1 Pt 1):235-47. PubMed ID: 14695265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blowing off acid: a new tool to study Na+/HCO3- co-transport.
    Avkiran M
    Br J Pharmacol; 2008 Mar; 153(5):844-5. PubMed ID: 18204484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury.
    Fantinelli JC; Orlowski A; Aiello EA; Mosca SM
    Cardiovasc Pathol; 2014; 23(4):224-30. PubMed ID: 24721237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: in vitro efficacy studies in breast cancer cells.
    Larsen AM; Krogsgaard-Larsen N; Lauritzen G; Olesen CW; Honoré Hansen S; Boedtkjer E; Pedersen SF; Bunch L
    ChemMedChem; 2012 Oct; 7(10):1808-14. PubMed ID: 22927258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes.
    Ideno M; Kobayashi M; Sasaki S; Futagi Y; Narumi K; Furugen A; Iseki K
    Life Sci; 2018 Jan; 192():110-114. PubMed ID: 29154783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3.
    Li JM; Lee S; Zafar R; Shin E; Choi I
    Oncol Rep; 2021 Jul; 46(1):. PubMed ID: 34013380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Na
    Yao H; Azad P; Zhao HW; Wang J; Poulsen O; Freitas BC; Muotri AR; Haddad GG
    Neuroscience; 2016 Dec; 339():329-337. PubMed ID: 27717805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a selective inhibitor of human monocarboxylate transporter 4.
    Futagi Y; Kobayashi M; Narumi K; Furugen A; Iseki K
    Biochem Biophys Res Commun; 2018 Jan; 495(1):427-432. PubMed ID: 28993194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes.
    Bröer S; Bröer A; Schneider HP; Stegen C; Halestrap AP; Deitmer JW
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):529-35. PubMed ID: 10417314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characteristics of H+ -dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex.
    Shimada A; Nakagawa Y; Morishige H; Yamamoto A; Fujita T
    Neurosci Lett; 2006 Jan; 392(3):207-12. PubMed ID: 16213084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons.
    Bröer S; Rahman B; Pellegri G; Pellerin L; Martin JL; Verleysdonk S; Hamprecht B; Magistretti PJ
    J Biol Chem; 1997 Nov; 272(48):30096-102. PubMed ID: 9374487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes.
    Peetz J; Barros LF; San Martín A; Becker HM
    Pflugers Arch; 2015 Jul; 467(7):1469-1480. PubMed ID: 25118990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and regulation of monocarboxylate cotransporters Slc16a7 and Slc16a3 in preimplantation mouse embryos.
    Jansen S; Pantaleon M; Kaye PL
    Biol Reprod; 2008 Jul; 79(1):84-92. PubMed ID: 18385447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage dependence of H+ buffering mediated by sodium bicarbonate cotransport expressed in Xenopus oocytes.
    Becker HM; Deitmer JW
    J Biol Chem; 2004 Jul; 279(27):28057-62. PubMed ID: 15123668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport Mechanisms for the Nutritional Supplement β-Hydroxy-β-Methylbutyrate (HMB) in Mammalian Cells.
    Ogura J; Sato T; Higuchi K; Bhutia YD; Babu E; Masuda M; Miyauchi S; Rueda R; Pereira SL; Ganapathy V
    Pharm Res; 2019 Apr; 36(6):84. PubMed ID: 30997560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An endogenous monocarboxylate transport in Xenopus laevis oocytes.
    Tosco M; Orsenigo MN; Gastaldi G; Faelli A
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1190-5. PubMed ID: 10801286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.
    Bröer S; Schneider HP; Bröer A; Rahman B; Hamprecht B; Deitmer JW
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):167-74. PubMed ID: 9639576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability.
    Galić S; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochem J; 2003 Dec; 376(Pt 2):413-22. PubMed ID: 12946269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.