These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26027845)

  • 1. Metabolic remodeling of bacterial surfaces via tetrazine ligations.
    Pidgeon SE; Pires MM
    Chem Commun (Camb); 2015 Jun; 51(51):10330-3. PubMed ID: 26027845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition.
    Han HS; Devaraj NK; Lee J; Hilderbrand SA; Weissleder R; Bawendi MG
    J Am Chem Soc; 2010 Jun; 132(23):7838-9. PubMed ID: 20481508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Control of Rapid Bioorthogonal Tetrazine Ligations for Selective Functionalization of Microelectrodes.
    Ehret F; Wu H; Alexander SC; Devaraj NK
    J Am Chem Soc; 2015 Jul; 137(28):8876-9. PubMed ID: 26132207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Profiling of Bacteria by Unnatural C-terminated D-Amino Acids.
    Pidgeon SE; Fura JM; Leon W; Birabaharan M; Vezenov D; Pires MM
    Angew Chem Int Ed Engl; 2015 May; 54(21):6158-62. PubMed ID: 25832713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Protein Labeling with Tetrazine Amino Acids.
    Blizzard RJ; Gibson TE; Mehl RA
    Methods Mol Biol; 2018; 1728():201-217. PubMed ID: 29405000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical D-amino acids.
    Horcajo P; de Pedro MA; Cava F
    Microb Drug Resist; 2012 Jun; 18(3):306-13. PubMed ID: 22443287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation.
    Zhang J; Men Y; Lv S; Yi L; Chen JF
    Org Biomol Chem; 2015 Dec; 13(47):11422-5. PubMed ID: 26548466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation.
    Tian Y; Fang M; Lin Q
    Bioorg Med Chem; 2021 Aug; 43():116256. PubMed ID: 34153838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes.
    Choi SK; Kim J; Kim E
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33810254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding room for tetrazine ligations in the in vivo chemistry toolbox.
    Sečkutė J; Devaraj NK
    Curr Opin Chem Biol; 2013 Oct; 17(5):761-7. PubMed ID: 24021760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-induced and Rapid Labeling of Tetrazine-Bearing Proteins via Cyclopropenone-Caged Bicyclononynes.
    Mayer SV; Murnauer A; von Wrisberg MK; Jokisch ML; Lang K
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15876-15882. PubMed ID: 31476269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrazine-Containing Amino Acid for Peptide Modification and Live Cell Labeling.
    Ni Z; Zhou L; Li X; Zhang J; Dong S
    PLoS One; 2015; 10(11):e0141918. PubMed ID: 26536589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioorthogonal tetrazine-mediated transfer reactions facilitate reaction turnover in nucleic acid-templated detection of microRNA.
    Wu H; Cisneros BT; Cole CM; Devaraj NK
    J Am Chem Soc; 2014 Dec; 136(52):17942-5. PubMed ID: 25495860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of tetrazine reactivity towards C-nucleophiles: pyrazolone-based modification of biomolecules.
    Renault K; Guillou C; Renard PY; Sabot C
    Org Biomol Chem; 2019 Jan; 17(2):388-396. PubMed ID: 30601507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-Specific In Vivo Bioorthogonal Ligation via Chemical Modulation.
    Koo H; Lee JH; Bao K; Wu Y; El Fakhri G; Henary M; Yun SH; Choi HS
    Adv Healthc Mater; 2016 Oct; 5(19):2510-2516. PubMed ID: 27568818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling.
    Margison KD; Bilodeau DA; Mahmoudi F; Pezacki JP
    Chembiochem; 2020 Apr; 21(7):948-951. PubMed ID: 31617669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioorthogonal Near-Infrared Fluorogenic Probe for mRNA Detection.
    Wu H; Alexander SC; Jin S; Devaraj NK
    J Am Chem Soc; 2016 Sep; 138(36):11429-32. PubMed ID: 27510580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging.
    Neubert F; Beliu G; Terpitz U; Werner C; Geis C; Sauer M; Doose S
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16364-16369. PubMed ID: 30347512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.