These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26027847)

  • 41. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures.
    Li WB; Zhuang M; Xiao TC; Green ML
    J Phys Chem B; 2006 Nov; 110(43):21568-71. PubMed ID: 17064108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst.
    Cheng K; Liu J; Zhang T; Li J; Zhao Z; Wei Y; Jiang G; Duan A
    J Environ Sci (China); 2014 Oct; 26(10):2106-13. PubMed ID: 25288555
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Active oxygen species of Co-V-O catalysts in propane oxidative dehydrogenation analyzed by FTIR and XPS spectra].
    Xu AJ; Lin Q; Bao Z; Jia ML; Liu LY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):346-50. PubMed ID: 19445200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The synthesis of Cu
    Yan Q; Chen S; Qiu L; Gao Y; O'Hare D; Wang Q
    Dalton Trans; 2018 Feb; 47(9):2992-3004. PubMed ID: 28737813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile construction of manganese oxide doped carbon nanotube catalysts with high activity for oxygen reduction reaction and investigations into the origin of their activity enhancement.
    Yang Z; Zhou X; Nie H; Yao Z; Huang S
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2601-6. PubMed ID: 21707039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO
    Cui Y; Song H; Shi Y; Ge P; Chen M; Xu L
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.
    Wang F; Zhang H; He D
    Environ Technol; 2014; 35(1-4):347-54. PubMed ID: 24600874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mn-Modified CuO, CuFe
    Shi X; Chu B; Wang F; Wei X; Teng L; Fan M; Li B; Dong L; Dong L
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40509-40522. PubMed ID: 30372026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Study on CuO-CeO2 catalysts doped with alkali and alkaline earth metal oxides by in-situ DRIFTS].
    Zou HB; Chen SZ; Wang QY; Liu ZL; Lin WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):672-6. PubMed ID: 20496684
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation.
    Chen CS; Chen TC; Chen CC; Lai YT; You JH; Chou TM; Chen CH; Lee JF
    Langmuir; 2012 Jul; 28(26):9996-10006. PubMed ID: 22676402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New Cu-based catalysts supported on TiO2 films for Ullmann S(N)Ar-type C-O coupling reactions.
    Benaskar F; Engels V; Rebrov EV; Patil NG; Meuldijk J; Thüne PC; Magusin PC; Mezari B; Hessel V; Hulshof LA; Hensen EJ; Wheatley AE; Schouten JC
    Chemistry; 2012 Feb; 18(6):1800-10. PubMed ID: 22223548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions.
    Kuo CH; Li W; Pahalagedara L; El-Sawy AM; Kriz D; Genz N; Guild C; Ressler T; Suib SL; He J
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2345-50. PubMed ID: 25284796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unravelling the Promotional Effect of La
    Wang Z; Huang L; Su B; Xu J; Ding Z; Wang S
    Chemistry; 2020 Jan; 26(2):517-523. PubMed ID: 31651058
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2.
    Liu Z; Amiridis MD; Chen Y
    J Phys Chem B; 2005 Jan; 109(3):1251-5. PubMed ID: 16851088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of MnO(x) modification on the activity and adsorption of CuO/Ce(0.67)Zr(0.33)O(2) catalyst for NO reduction.
    Liu L; Yu Q; Zhu J; Wan H; Sun K; Liu B; Zhu H; Gao F; Dong L; Chen Y
    J Colloid Interface Sci; 2010 Sep; 349(1):246-55. PubMed ID: 20557896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia.
    Chary KV; Sagar GV; Srikanth CS; Rao VV
    J Phys Chem B; 2007 Jan; 111(3):543-50. PubMed ID: 17228912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of titania structure on the properties of its supported copper oxide catalysts.
    Zhu H; Dong L; Chen Y
    J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3.
    Zhao W; Tang Y; Wan Y; Li L; Yao S; Li X; Gu J; Li Y; Shi J
    J Hazard Mater; 2014 Aug; 278():350-9. PubMed ID: 24996153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface and Structural Investigation of a MnOx Birnessite-Type Water Oxidation Catalyst Formed under Photocatalytic Conditions.
    Deibert BJ; Zhang J; Smith PF; Chapman KW; Rangan S; Banerjee D; Tan K; Wang H; Pasquale N; Chen F; Lee KB; Dismukes GC; Chabal YJ; Li J
    Chemistry; 2015 Sep; 21(40):14218-28. PubMed ID: 26263021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity.
    Hou J; Li Y; Mao M; Ren L; Zhao X
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14981-7. PubMed ID: 25140618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.