These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26027877)

  • 1. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface.
    Kudernatsch W; Peng G; Zeuthen H; Bai Y; Merte LR; Lammich L; Besenbacher F; Mavrikakis M; Wendt S
    ACS Nano; 2015 Aug; 9(8):7804-14. PubMed ID: 26027877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the edge structures of platinum(111)-supported ultrathin FeO islands: the influence of oxidation state.
    Zeuthen H; Kudernatsch W; Merte LR; Ono LK; Lammich L; Besenbacher F; Wendt S
    ACS Nano; 2015 Jan; 9(1):573-83. PubMed ID: 25574971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO oxidation at the perimeters of an FeO/Pt(111) interface and how water promotes the activity: a first-principles study.
    Gu XK; Ouyang R; Sun D; Su HY; Li WX
    ChemSusChem; 2012 May; 5(5):871-8. PubMed ID: 22162485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-Scale View of the Oxidation and Reduction of Supported Ultrathin FeO Islands.
    Li Y; Adamsen KC; Lammich L; Lauritsen JV; Wendt S
    ACS Nano; 2019 Oct; 13(10):11632-11641. PubMed ID: 31513376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.
    Xu L; Wu Z; Jin Y; Ma Y; Huang W
    Phys Chem Chem Phys; 2013 Aug; 15(29):12068-74. PubMed ID: 23576093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct STM elucidation of the effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation.
    Inukai J; Tryk DA; Abe T; Wakisaka M; Uchida H; Watanabe M
    J Am Chem Soc; 2013 Jan; 135(4):1476-90. PubMed ID: 23294135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO
    Yin H; Yan YW; Fang W; Brune H
    ACS Nano; 2024 Mar; 18(9):7114-7122. PubMed ID: 38377596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
    Fu Q; Yao Y; Guo X; Wei M; Ning Y; Liu H; Yang F; Liu Z; Bao X
    Phys Chem Chem Phys; 2013 Sep; 15(35):14708-14. PubMed ID: 23900259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation on Pt-modified Rh(111) electrodes.
    Housmans TH; Feliu JM; Gómez R; Koper MT
    Chemphyschem; 2005 Aug; 6(8):1522-9. PubMed ID: 16035023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO-induced embedding of Pt adatoms in a partially reduced FeO(x) film on Pt(111).
    Merte LR; Knudsen J; Eichhorn FM; Porsgaard S; Zeuthen H; Grabow LC; Lægsgaard E; Bluhm H; Salmeron M; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2011 Jul; 133(28):10692-5. PubMed ID: 21707081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical study of the reactions between small neutral iron oxide clusters and carbon monoxide.
    Xue W; Wang ZC; He SG; Xie Y; Bernstein ER
    J Am Chem Soc; 2008 Nov; 130(47):15879-88. PubMed ID: 18975866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].
    Jiang P; Bao X; Salmeron M
    Acc Chem Res; 2015 May; 48(5):1524-31. PubMed ID: 25856470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of water dissociation with lattice incorporation at FeO particle edges using scanning tunneling microscopy and X-ray photoelectron spectroscopy.
    Deng X; Lee J; Wang C; Matranga C; Aksoy F; Liu Z
    Langmuir; 2011 Mar; 27(6):2146-9. PubMed ID: 21275405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfaces of complex intermetallic compounds: insights from density functional calculations.
    Hafner J; Krajčí M
    Acc Chem Res; 2014 Nov; 47(11):3378-84. PubMed ID: 24741993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of all the intermediate steps of a chemical reaction on an oxide surface by scanning tunneling microscopy.
    Matthiesen J; Wendt S; Hansen JØ; Madsen GK; Lira E; Galliker P; Vestergaard EK; Schaub R; Laegsgaard E; Hammer B; Besenbacher F
    ACS Nano; 2009 Mar; 3(3):517-26. PubMed ID: 19309169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for CO oxidation on Fe(iii)-OH-Pt interface: a DFT study.
    Zhao Y; Chen G; Zheng N; Fu G
    Faraday Discuss; 2014; 176():381-92. PubMed ID: 25430777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.