BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26028049)

  • 1. SUMOylation Modulates CFTR Biogenesis: Is the Pathway Druggable?
    Ahner A; Frizzell RA
    Curr Drug Targets; 2015; 16(9):965-75. PubMed ID: 26028049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.
    Gong X; Ahner A; Roldan A; Lukacs GL; Thibodeau PH; Frizzell RA
    J Biol Chem; 2016 Jan; 291(4):2004-2017. PubMed ID: 26627832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent signaling via SUMO modification: potential for CFTR modulation.
    Ahner A; Gong X; Frizzell RA
    Am J Physiol Cell Physiol; 2016 Feb; 310(3):C175-80. PubMed ID: 26582473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?
    Heard A; Thompson J; Carver J; Bakey M; Wang XR
    Curr Drug Targets; 2015; 16(9):958-64. PubMed ID: 25981601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different SUMO paralogues determine the fate of wild-type and mutant CFTRs: biogenesis versus degradation.
    Gong X; Liao Y; Ahner A; Larsen MB; Wang X; Bertrand CA; Frizzell RA
    Mol Biol Cell; 2019 Jan; 30(1):4-16. PubMed ID: 30403549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.
    Ahner A; Gong X; Schmidt BZ; Peters KW; Rabeh WM; Thibodeau PH; Lukacs GL; Frizzell RA
    Mol Biol Cell; 2013 Jan; 24(2):74-84. PubMed ID: 23155000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-Molecule Inhibitors Targeting Protein SUMOylation as Novel Anticancer Compounds.
    Yang Y; Xia Z; Wang X; Zhao X; Sheng Z; Ye Y; He G; Zhou L; Zhu H; Xu N; Liang S
    Mol Pharmacol; 2018 Aug; 94(2):885-894. PubMed ID: 29784649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescuing mutant CFTR: a multi-task approach to a better outcome in treating cystic fibrosis.
    Amaral MD; Farinha CM
    Curr Pharm Des; 2013; 19(19):3497-508. PubMed ID: 23331027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    Chung WJ; Goeckeler-Fried JL; Havasi V; Chiang A; Rowe SM; Plyler ZE; Hong JS; Mazur M; Piazza GA; Keeton AB; White EL; Rasmussen L; Weissman AM; Denny RA; Brodsky JL; Sorscher EJ
    PLoS One; 2016; 11(10):e0163615. PubMed ID: 27732613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting ENaC as a Molecular Suspect in Cystic Fibrosis.
    Bangel-Ruland N; Tomczak K; Weber WM
    Curr Drug Targets; 2015; 16(9):951-7. PubMed ID: 25544019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies.
    Amaral MD
    Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting SUMO Signaling to Wrestle Cancer.
    Kroonen JS; Vertegaal ACO
    Trends Cancer; 2021 Jun; 7(6):496-510. PubMed ID: 33353838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors.
    Solomon GM; Marshall SG; Ramsey BW; Rowe SM
    Pediatr Pulmonol; 2015 Oct; 50 Suppl 40(0 40):S3-S13. PubMed ID: 26097168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cystic fibrosis: CFTR modulators and their mechanism of action.
    Nieddu E
    Curr Pharm Des; 2013; 19(19):3474-5. PubMed ID: 23331031
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies.
    Odolczyk N; Zielenkiewicz P
    Int J Biochem Cell Biol; 2014 Jul; 52():39-46. PubMed ID: 24735712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis.
    Verkman AS; Lukacs GL; Galietta LJ
    Curr Pharm Des; 2006; 12(18):2235-47. PubMed ID: 16787252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Practical Therapeutic Strategies that Target Protein SUMOylation.
    Cox OF; Huber PW
    Curr Drug Targets; 2019; 20(9):960-969. PubMed ID: 30362419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.