These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26028500)

  • 1. The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation.
    Hamre AG; Schaupp D; Eijsink VG; Sørlie M
    FEBS Lett; 2015 Jul; 589(15):1807-12. PubMed ID: 26028500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity.
    Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M
    Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides.
    Horn SJ; Sikorski P; Cederkvist JB; Vaaje-Kolstad G; Sørlie M; Synstad B; Vriend G; Vårum KM; Eijsink VG
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18089-94. PubMed ID: 17116887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic Relationships with Processivity in Serratia marcescens Family 18 Chitinases.
    Hamre AG; Jana S; Holen MM; Mathiesen G; Väljamäe P; Payne CM; Sørlie M
    J Phys Chem B; 2015 Jul; 119(30):9601-13. PubMed ID: 26154587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processivity, Substrate Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase.
    Hamre AG; Jana S; Reppert NK; Payne CM; Sørlie M
    Biochemistry; 2015 Dec; 54(49):7292-306. PubMed ID: 26503416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin.
    Igarashi K; Uchihashi T; Uchiyama T; Sugimoto H; Wada M; Suzuki K; Sakuda S; Ando T; Watanabe T; Samejima M
    Nat Commun; 2014 Jun; 5():3975. PubMed ID: 24894873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases.
    Jana S; Hamre AG; Wildberger P; Holen MM; Eijsink VG; Beckham GT; Sørlie M; Payne CM
    J Phys Chem B; 2016 Feb; 120(7):1236-49. PubMed ID: 26824449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.
    Kuusk S; Sørlie M; Väljamäe P
    J Biol Chem; 2015 May; 290(18):11678-91. PubMed ID: 25767120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.
    Kurašin M; Kuusk S; Kuusk P; Sørlie M; Väljamäe P
    J Biol Chem; 2015 Nov; 290(48):29074-85. PubMed ID: 26468285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
    Horn SJ; Sørbotten A; Synstad B; Sikorski P; Sørlie M; Vårum KM; Eijsink VG
    FEBS J; 2006 Feb; 273(3):491-503. PubMed ID: 16420473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic relationships with processivity in Serratia marcescens family 18 glycoside hydrolases.
    Hamre AG; Sørlie M
    Biochem Biophys Res Commun; 2020 Jan; 521(1):120-124. PubMed ID: 31629467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency.
    Zakariassen H; Aam BB; Horn SJ; Vårum KM; Sørlie M; Eijsink VG
    J Biol Chem; 2009 Apr; 284(16):10610-7. PubMed ID: 19244232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170.
    Hult EL; Katouno F; Uchiyama T; Watanabe T; Sugiyama J
    Biochem J; 2005 Jun; 388(Pt 3):851-6. PubMed ID: 15717865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring processivity.
    Horn SJ; Sørlie M; Vårum KM; Väljamäe P; Eijsink VG
    Methods Enzymol; 2012; 510():69-95. PubMed ID: 22608722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases.
    Payne CM; Baban J; Horn SJ; Backe PH; Arvai AS; Dalhus B; Bjørås M; Eijsink VG; Sørlie M; Beckham GT; Vaaje-Kolstad G
    J Biol Chem; 2012 Oct; 287(43):36322-30. PubMed ID: 22952223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate positioning in chitinase A, a processive chito-biohydrolase from Serratia marcescens.
    Norberg AL; Dybvik AI; Zakariassen H; Mormann M; Peter-Katalinić J; Eijsink VG; Sørlie M
    FEBS Lett; 2011 Jul; 585(14):2339-44. PubMed ID: 21683074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase.
    Hamre AG; Frøberg EE; Eijsink VGH; Sørlie M
    Arch Biochem Biophys; 2017 Apr; 620():35-42. PubMed ID: 28359644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery.
    Itoh T; Hibi T; Suzuki F; Sugimoto I; Fujiwara A; Inaka K; Tanaka H; Ohta K; Fujii Y; Taketo A; Kimoto H
    PLoS One; 2016; 11(12):e0167310. PubMed ID: 27907169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.