BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26028599)

  • 21. Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study.
    Tang M; Sugiyama T; Takahari R; Sugimori H; Yoshimura T; Ogasawara K; Kudo K; Fujimura M
    Neurosurg Rev; 2024 May; 47(1):200. PubMed ID: 38722409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Task decomposition of laparoscopic surgery for objective evaluation of surgical residents' learning curve using hidden Markov model.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Comput Aided Surg; 2002; 7(1):49-61. PubMed ID: 12173880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions.
    Rosen J; Solazzo M; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2001; 81():417-23. PubMed ID: 11317782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating surgical dexterity during corneal suturing.
    Saleh GM; Voyatzis G; Hance J; Ratnasothy J; Darzi A
    Arch Ophthalmol; 2006 Sep; 124(9):1263-6. PubMed ID: 16966621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal eye movement strategies: a comparison of neurosurgeons gaze patterns when using a surgical microscope.
    Eivazi S; Hafez A; Fuhl W; Afkari H; Kasneci E; Lehecka M; Bednarik R
    Acta Neurochir (Wien); 2017 Jun; 159(6):959-966. PubMed ID: 28424915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic Review of Factors Influencing Surgical Performance: Practical Recommendations for Microsurgical Procedures in Neurosurgery.
    Belykh E; Onaka NR; Abramov IT; Yağmurlu K; Byvaltsev VA; Spetzler RF; Nakaj P; Preul MC
    World Neurosurg; 2018 Apr; 112():e182-e207. PubMed ID: 29325962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hands-free Adjustment of the Microscope in Microneurosurgery.
    Khakhar R; You F; Chakkalakal D; Dobbelstein D; Picht T
    World Neurosurg; 2021 Apr; 148():e155-e163. PubMed ID: 33385607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ahead of the Curve: Tracking Progress in Novice Microsurgeons.
    Brosious JP; Kleban SR; Goldman JJ; Mohsin AG; Williams SJ; Wang WZ; Menezes JM; Baynosa RC
    J Reconstr Microsurg; 2019 Mar; 35(3):216-220. PubMed ID: 30241102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Training less-experienced faculty improves reliability of skills assessment in cardiac surgery.
    Lou X; Lee R; Feins RH; Enter D; Hicks GL; Verrier ED; Fann JI
    J Thorac Cardiovasc Surg; 2014 Dec; 148(6):2491-6.e1-2. PubMed ID: 25308119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "PhacoTracking": an evolving paradigm in ophthalmic surgical training.
    Smith P; Tang L; Balntas V; Young K; Athanasiadis Y; Sullivan P; Hussain B; Saleh GM
    JAMA Ophthalmol; 2013 May; 131(5):659-61. PubMed ID: 23519488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The end game - A quantitative assessment tool for anastomosis in simulated microsurgery.
    Kim E; Norman ICF; Myers S; Singh M; Ghanem A
    J Plast Reconstr Aesthet Surg; 2020 Jun; 73(6):1116-1121. PubMed ID: 32197885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensor fusion for laparoscopic surgery skill acquisition.
    Anderson F; Birch DW; Boulanger P; Bischof WF
    Comput Aided Surg; 2012; 17(6):269-83. PubMed ID: 23098188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Video review for measuring and improving skill in urological surgery.
    Prebay ZJ; Peabody JO; Miller DC; Ghani KR
    Nat Rev Urol; 2019 Apr; 16(4):261-267. PubMed ID: 30622365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative measures of performance in microvascular anastomoses.
    McBeth PB; Louw DF; Yang F; Sutherland GR
    Comput Aided Surg; 2005 May; 10(3):173-80. PubMed ID: 16321915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skill acquisition process in vascular anastomosis procedures: a simulation-based study.
    Tavlasoglu M; Durukan AB; Gurbuz HA; Jahollari A; Guler A
    Eur J Cardiothorac Surg; 2015 May; 47(5):812-8. PubMed ID: 25064050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An objective skill assessment framework for microsurgical anastomosis based on ALI scores.
    Gholami S; Manon A; Yao K; Billard A; Meling TR
    Acta Neurochir (Wien); 2024 Feb; 166(1):104. PubMed ID: 38400918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascular anastomosis model: relation between competency in a laboratory-based model and surgical competency.
    Wilasrusmee C; Lertsithichai P; Kittur DS
    Eur J Vasc Endovasc Surg; 2007 Oct; 34(4):405-10. PubMed ID: 17681827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Randomized Control Trial Exploring the Effect of Mental Rehearsal and Cognitive Visualization on Microsurgery Skills.
    Chadha P; Hachach-Haram N; Shurey S; Mohanna PN
    J Reconstr Microsurg; 2016 Sep; 32(7):499-505. PubMed ID: 26934963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing instrument handling and operative consequences simultaneously: a simple method for creating synced multicamera videos for endosurgical or microsurgical skills assessments.
    Jabbour N; Sidman J
    Simul Healthc; 2011 Oct; 6(5):299-303. PubMed ID: 21527869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new vascular anastomosis model: relation between outcome and experience.
    Wilasrusmee C; Phromsopha N; Lertsitichai P; Kittur DS
    Eur J Vasc Endovasc Surg; 2007 Feb; 33(2):208-13. PubMed ID: 17097903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.