These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26028749)

  • 41. Physical and chemical analysis of Passiflora seeds and seed oil from China.
    Liu S; Yang F; Li J; Zhang C; Ji H; Hong P
    Int J Food Sci Nutr; 2008; 59(7-8):706-15. PubMed ID: 18608550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physico-chemical composition and characterisation of the seed and seed oil of Sclerocarya birrea.
    Ogbobe O
    Plant Foods Hum Nutr; 1992 Jul; 42(3):201-6. PubMed ID: 1502123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physico-chemical properties of Tecoma stans Linn. seed oil: a new crop for vegetable oil.
    Sbihi HM; Mokbli S; Nehdi IA; Al-Resayes SI
    Nat Prod Res; 2015; 29(13):1249-55. PubMed ID: 25813239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipid composition of lesser known tropical seeds.
    Essien EU; Esenowo GJ; Akpanabiatu MI
    Plant Foods Hum Nutr; 1995 Sep; 48(2):135-40. PubMed ID: 8837872
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Oil contents and fatty acid composition in Jatropha curcas seeds collected from different regions].
    Wang ZY; Lin JM; Xu ZF
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Jun; 28(6):1045-6. PubMed ID: 18583260
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil.
    Atolani O; Oguntoye H; Areh ET; Adeyemi OS; Kambizi L
    Pharm Biol; 2019 Dec; 57(1):154-160. PubMed ID: 30905238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss.
    Mohadjerani M; Hosseinzadeh R; Hosseini M
    Avicenna J Phytomed; 2016; 6(3):357-65. PubMed ID: 27462560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Some physicochemical characteristics of pinus (Pinus halepensis Mill., Pinus pinea L., Pinus pinaster and Pinus canariensis) seeds from North Algeria, their lipid profiles and volatile contents.
    Kadri N; Khettal B; Aid Y; Kherfellah S; Sobhi W; Barragan-Montero V
    Food Chem; 2015 Dec; 188():184-92. PubMed ID: 26041181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discrimination of pulp oil and kernel oil from pequi (Caryocar brasiliense) by fatty acid methyl esters fingerprinting, using GC-FID and multivariate analysis.
    Faria-Machado AF; Tres A; van Ruth SM; Antoniassi R; Junqueira NT; Lopes PS; Bizzo HR
    J Agric Food Chem; 2015 Nov; 63(45):10064-9. PubMed ID: 26506457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Underutilised legumes: potential sources for low-cost protein.
    Prakash D; Niranjan A; Tewari SK; Pushpangadan P
    Int J Food Sci Nutr; 2001 Jul; 52(4):337-41. PubMed ID: 11474898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of composition on the thermal behavior of oils extracted from the seeds of some Romanian grapes.
    Chambre DR; Tociu M; Stanescu MD; Popescu C
    J Sci Food Agric; 2019 Nov; 99(14):6324-6332. PubMed ID: 31260108
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fatty acid composition of developing tree peony (Paeonia section Moutan DC.) seeds and transcriptome analysis during seed development.
    Li SS; Wang LS; Shu QY; Wu J; Chen LG; Shao S; Yin DD
    BMC Genomics; 2015 Mar; 16(1):208. PubMed ID: 25887415
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compositions of the seed oil of the Borago officinalis from Iran.
    Morteza E; Akbari GA; Moaveni P; Alahdadi I; Bihamta MR; Hasanloo T; Joorabloo A
    Nat Prod Res; 2015; 29(7):663-6. PubMed ID: 25360856
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Górnaś P; Rudzińska M; Grygier A; Sahu PK; Patel KS
    Nat Prod Res; 2020 Jan; 34(2):296-299. PubMed ID: 30406669
    [No Abstract]   [Full Text] [Related]  

  • 55. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM.
    Zhao ML; Tang L; Zhu XM; Hu JN; Li HY; Luo LP; Lei L; Deng ZY
    J Agric Food Chem; 2013 Feb; 61(6):1189-95. PubMed ID: 23350869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase.
    Fahy D; Scheer B; Wallis JG; Browse J
    Plant Biotechnol J; 2013 May; 11(4):480-9. PubMed ID: 23279079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .
    Soliman SS; Al-Obeed RS; Ahmed TA
    J Environ Biol; 2015 Mar; 36(2):455-9. PubMed ID: 25895270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nutritional composition of Zizyphus lotus L. seeds.
    Chouaibi M; Mahfoudhi N; Rezig L; Donsì F; Ferrari G; Hamdi S
    J Sci Food Agric; 2012 Apr; 92(6):1171-7. PubMed ID: 22095748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety.
    Yanty NA; Marikkar JM; Nusantoro BP; Long K; Ghazali HM
    J Oleo Sci; 2014; 63(9):885-92. PubMed ID: 25174674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds.
    Lee KR; Kim KH; Kim JB; Hong SB; Jeon I; Kim HU; Lee MH; Kim JK
    BMC Plant Biol; 2019 Apr; 19(1):120. PubMed ID: 30935415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.