BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26028806)

  • 1. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata).
    McCauley SJ; Hammond JI; Frances DN; Mabry KE
    Ecol Entomol; 2015 Jun; 40(3):211-220. PubMed ID: 26028806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly.
    McCauley SJ; Hammond JI; Mabry KE
    Ecosphere; 2018 Mar; 9(3):. PubMed ID: 30555728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential larval responses of two ecologically similar insects (Odonata) to temperature and resource variation.
    Chavez MY; Mabry KE; McCauley SJ; Hammond JI
    Int J Odonatol; 2015; 18(4):297-304. PubMed ID: 30078992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of experimental warming on the timing of a plant-insect herbivore interaction.
    Kharouba HM; Vellend M; Sarfraz RM; Myers JH
    J Anim Ecol; 2015 May; 84(3):785-796. PubMed ID: 25535854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly.
    Raczyński M; Stoks R; Johansson F; Bartoń K; Sniegula S
    Insects; 2022 Jul; 13(7):. PubMed ID: 35886798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larvae of Caribbean Echinoids Have Small Warming Tolerances for Chronic Stress in Panama.
    Perricone V; Collin R
    Biol Bull; 2019 Apr; 236(2):115-129. PubMed ID: 30933644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of climate and demography on reproductive phenology of a harvested marine fish population.
    Rogers LA; Dougherty AB
    Glob Chang Biol; 2019 Feb; 25(2):708-720. PubMed ID: 30430699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Water Temperature Under Projected Climate Change on the Development and Survival of Enallagma civile (Odonata: Coenagrionidae).
    Starr SM; McIntyre NE
    Environ Entomol; 2020 Feb; 49(1):230-237. PubMed ID: 31789339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.
    Christiansen-Jucht CD; Parham PE; Saddler A; Koella JC; Basáñez MG
    Parasit Vectors; 2015 Sep; 8():456. PubMed ID: 26382035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect.
    Jourdan J; Baranov V; Wagner R; Plath M; Haase P
    J Anim Ecol; 2019 Oct; 88(10):1498-1509. PubMed ID: 31264217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s.
    Christiansen-Jucht C; Parham PE; Saddler A; Koella JC; Basáñez MG
    Parasit Vectors; 2014 Nov; 7():489. PubMed ID: 25367091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.
    Harney E; Artigaud S; Le Souchu P; Miner P; Corporeau C; Essid H; Pichereau V; Nunes FLD
    J Proteomics; 2016 Mar; 135():151-161. PubMed ID: 26657130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly.
    Sniegula S; Golab MJ; Johansson F
    J Anim Ecol; 2019 Apr; 88(4):637-648. PubMed ID: 30659605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spring warming increases the abundance of an invasive specialist insect: links to phenology and life history.
    Ju RT; Gao L; Wei SJ; Li B
    Sci Rep; 2017 Nov; 7(1):14805. PubMed ID: 29093523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.