BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26029054)

  • 1. Expression and contributions of the Kir2.1 inward-rectifier K(+) channel to proliferation, migration and chemotaxis of microglia in unstimulated and anti-inflammatory states.
    Lam D; Schlichter LC
    Front Cell Neurosci; 2015; 9():185. PubMed ID: 26029054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K
    Lam D; Lively S; Schlichter LC
    J Neuroinflammation; 2017 Aug; 14(1):166. PubMed ID: 28830445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex molecular and functional outcomes of single versus sequential cytokine stimulation of rat microglia.
    Siddiqui TA; Lively S; Schlichter LC
    J Neuroinflammation; 2016 Mar; 13(1):66. PubMed ID: 27009332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia.
    Ferreira R; Lively S; Schlichter LC
    Front Cell Neurosci; 2014; 8():183. PubMed ID: 25071444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inhibition of Kir2.1 potassium channels depolarizes spinal microglial cells, reduces their proliferation, and attenuates neuropathic pain.
    Gattlen C; Deftu AF; Tonello R; Ling Y; Berta T; Ristoiu V; Suter MR
    Glia; 2020 Oct; 68(10):2119-2135. PubMed ID: 32220118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and contributions of TRPM7 and KCa2.3/SK3 channels to the increased migration and invasion of microglia in anti-inflammatory activation states.
    Siddiqui T; Lively S; Ferreira R; Wong R; Schlichter LC
    PLoS One; 2014; 9(8):e106087. PubMed ID: 25148577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo.
    Di Lucente J; Nguyen HM; Wulff H; Jin LW; Maezawa I
    Glia; 2018 Sep; 66(9):1881-1895. PubMed ID: 30043400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia Induces Apoptosis of Microglia BV2 by Upregulating Kir2.1 to Activate Mitochondrial-Related Apoptotic Pathways.
    Xie YF; Wang Y; Rong Y; He W; Yan M; Li X; Si J; Li L; Zhang Y; Ma K
    Dis Markers; 2022; 2022():5855889. PubMed ID: 35340413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Kv1.3, KCa3.1, and Kir2.1 expression in "classically" and "alternatively" activated microglia.
    Nguyen HM; Grössinger EM; Horiuchi M; Davis KW; Jin LW; Maezawa I; Wulff H
    Glia; 2017 Jan; 65(1):106-121. PubMed ID: 27696527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels.
    Lively S; Lam D; Wong R; Schlichter LC
    Front Cell Neurosci; 2018; 12():115. PubMed ID: 29780305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes.
    Zuo D; Chen K; Zhou M; Liu Z; Chen H
    J Physiol; 2017 Aug; 595(15):5129-5142. PubMed ID: 28543529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.
    Sonkusare SK; Dalsgaard T; Bonev AD; Nelson MT
    J Physiol; 2016 Jun; 594(12):3271-85. PubMed ID: 26840527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells.
    Zhang X; Cui X; Li X; Yan H; Li H; Guan X; Wang Y; Liu S; Qin X; Cheng M
    J Mol Cell Cardiol; 2019 Feb; 127():57-66. PubMed ID: 30447228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion channels and transporters in microglial function in physiology and brain diseases.
    Luo L; Song S; Ezenwukwa CC; Jalali S; Sun B; Sun D
    Neurochem Int; 2021 Jan; 142():104925. PubMed ID: 33248207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex- and Development-Dependent Responses of Rat Microglia to Pro- and Anti-inflammatory Stimulation.
    Lively S; Wong R; Lam D; Schlichter LC
    Front Cell Neurosci; 2018; 12():433. PubMed ID: 30524242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.
    Spencer NG; Schilling T; Miralles F; Eder C
    PLoS One; 2016; 11(9):e0162497. PubMed ID: 27598576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kir2.1 channels set two levels of resting membrane potential with inward rectification.
    Chen K; Zuo D; Liu Z; Chen H
    Pflugers Arch; 2018 Apr; 470(4):599-611. PubMed ID: 29282531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel.
    Wu SY; Chen YW; Tsai SF; Wu SN; Shih YH; Jiang-Shieh YF; Yang TT; Kuo YM
    Sci Rep; 2016 Mar; 6():22864. PubMed ID: 26960267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inward rectifier potassium 2.1 channel on the osteogenic differentiation of human dental follicle cells and its mechanism.
    Zhang P; Zuo D; Mou S; Zhong Y; Yuan X; Zeng J
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2022 Mar; 40(2):139-147. PubMed ID: 38597045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.
    Ponce-Balbuena D; López-Izquierdo A; Ferrer T; Rodríguez-Menchaca AA; Aréchiga-Figueroa IA; Sánchez-Chapula JA
    J Pharmacol Exp Ther; 2009 Nov; 331(2):563-73. PubMed ID: 19654266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.